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Welcome

Welcome to MA22004 Statistics II at the University of Dundee.

This module covers the basics of statistical inference including point estimation, interval estimation, hy-
pothesis testing, linear regression, and simple goodness-of-fit tests. The appendix contains a list of curated
content for your to investigate.

These notes are available at dundeemath.github.io/MA22004/ and also as a PDF (visit the page and click
on the PDF icon to download).

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License.
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Part I

Module Introduction
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About Your Instructor

Hi, folks!

I’m Eric—your instructor for MA22004 this semester. I am a new Baxter Fellow in Applied Mathematics
at Dundee, and my research focuses on uncertainty quantification and predictive modelling.

Originally from the US, I graduated from the University of Pennsylvania with a BA in Mathematics. I
wrote my PhD in Probability and Stochastic Analysis at the University of Edinburgh. Math and stats
have opened up some exciting doors for me, and I’ve had the opportunity to undertake postdoctoral work
at KTH Stockholm, the University of Massachusetts Amherst, and RWTH Aachen University. I’m very
excited to be at Dundee and back in Scotland. I’m even more excited to be teaching you statistics this
semester!

Eric Hall

Dundee, 2024
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Lab Guide

Youwill learn about the statistical programming language R and the software RStudio by working through
seven interactive lab tutorials and completing lab reports. The lab reports should answer the exercise
questions at the end of each tutorial.

Tutorials and all associated materials (templates, data sets, further instructions, etc.) are available as an
R package at the GitHub repository dundeemath/MA22004labs (i.e., https://github.com/dundeemath/MA
22004labs).

Instructions on how to install and access the interactive lab tutorials can be found at:

• https://dundeemath.github.io/MA22004labs/.

The following section contains details about writing lab reports.
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Writing Lab Reports

Assessment Criteria

There are seven interactive lab tutorials with accompanying exercises. Each lab tutorial specifies how
marks are allocated across the exercises (a maximum of 20 marks available for each lab report).

Important

Marks are awarded for both content and presentation.

Content

Please work through the interactive tutorial for each lab. Your lab report should answer the exercises
found at the end of each tutorial.

Presentation

Please use Quarto to create your lab report. Further instructions on using Quarto for creating reproducible
lab reports that combine data analysis and text can be found in Lab 1. This set of lecture notes was authored
using Quarto; you can see the source code in the GitHub repository https://github.com/dundeemath/MA
22004.

Plots

Plots should be neat and legible, with appropriate aesthetic elements. Please use ggplot for creating
plots and visualisations. Each plot should be annotated with titles, axis labels, and legends as appropriate.
Plot aesthetics should be distinguished, e.g. using colours or line styles that are identified using a legend.
Important data points and coordinates should be annotated using labels.

Mathematical formulas

Mathematical formulas should follow the same style rules as the lecture notes. Formulas can be included
in Quarto documents using LATEX syntax. There should be appropriate spacing around operators and
equals signs, e.g. 𝑎 + 𝑏 = 𝑐. For punctuation, formulas are treated as part of the text, so they often need
to end with a full stop or comma. Important formulas can appear “displayed” on their own line (with line
spacing above and below them), e.g.,

𝐴 = 𝜋𝑟2 .
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Structure

Structure should be logical and clear. Organise your writing with suitable headings and sub-headings.
For example, provide a solution to each exercise under its own heading.

Writing

Writing should follow the usual rules of good written English, including writing complete sentences
and paragraphs that get to the point quickly. Your tone and language should be similar to lecture notes or
scientific journal articles. Formal writing does not require unnecessary words, long words or monotonous
use of passive voice. I will reward concise and clear communication, so please do not write, “Upon
carefully analysing the aforementioned equations, the following mathematical solution was found,” when
“The solution is” conveys the same thing.

Formatting

Formatting should rely on the MA22004 Lab Report template. This is available in the MA22004labs
package, and further instructions can be found in Lab 1.
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Part II

Lecture Notes
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Preliminaries

This section contains a list of abbreviations, comment on notation, and a (very quick) review of probabil-
ity.

Abbreviations

In Table 1 we list abbreviations used throughout these lecture notes. These abbreviations are pretty stand-
dard and you might encounter them outside the module in other references.

Table 1: Commonly used abbreviations.

Abbreviation Expanded
pdf probability density function
cdf cumulative distribution function
rv random variable
iid independent and identically distributed
obs observations
CI confidence interval
df degrees of freedom

Notation

Uppercase roman letters, e.g., 𝑋, will typically denote random variables (rvs); lower case letters, e.g., 𝑥,
will represent a particular value (observation) of a rv. Rvs have probability distributions. Distributions
are typically characterised by parameters that describe population characteristics. In the present module,
we will adopt the (frequentists) view that parameters are fixed real numbers that are often unknown and
must be estimated from data. Statistical inference is a tool that will help us to do this.

Variables and parameters

Statistical models comprise both rvs and parameters. Be careful not to confuse them!

For a random variable 𝑋 that has a distribution 𝐹 depending on a set of parameters Θ, we will write
𝑋 ∼ 𝐹 (Θ).

Specifying a probability distribution

We write 𝑋 ∼ 𝐹 (Θ) to indicate 𝑋 has distribution function 𝐹 (Θ). This is not read as “𝑋 is approx-
imately 𝐹 (Θ)”!
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Sample space, events, probabilities

A sample space Ω is a set of possible outcomes of an experiment. Points 𝜔 ∈ Ω are sample outcomes or
realizations. Subsets 𝐴 ⊂ Ω are called events.

Example 0.1 (Sample space). Consider an experiment where we measure the petal widths from a ran-
domly sampled cyclamen flowers. Before we observe the petal width, there is uncertainty that we can
model using a sample space of events. The sample space is Ω = (0, ∞), since measurements of length
should be positive (practically, the lengths will have a finite size, too). Each 𝜔 ∈ Ω is a measurement of
petal width for a cyclamen flower. Consider an event 𝐴 = (5, 12]; this is the event that the petal width is
larger than 5 but less than or equal to 12. Remember, we use probability to model uncertainty before we
observe the petal width — after we take a measurement, the petal width is no longer uncertain (we have
collected a statistic).

As sample spaces and events are described using sets, we recall the following notations, definitions, and
laws about set theory. Let 𝐴, 𝐵, and 𝐴1, 𝐴2, … be events in a sample space Ω.

• complement: 𝐴𝑐 = {𝜔 ∈ Ω ∶ 𝜔 ∉ 𝐴}.

• null event: ∅ = Ω𝑐 .

• intersection: 𝐴 ∩ 𝐵 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴 and 𝜔 ∈ 𝐵}. In particular, for 𝐴1, 𝐴2, … , then

∞

⋂
𝑖=1

𝐴𝑖 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴𝑖 for all 𝑖} .

• difference: 𝐴 ∖ 𝐵 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴, 𝜔 ∉ 𝐵}.

• size: |𝐴| denotes the number of elements in 𝐴.

• disjoint: 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖 ≠ 𝑗.

• partition: disjoint 𝐴1, 𝐴2, … such that ⋃∞
𝑖=1 𝐴𝑖 = Ω.

• indicator: 𝐼𝐴(𝜔) = 𝐼(𝜔 ∈ 𝐴) = {1 if 𝜔 ∈ 𝐴; 0 if 𝜔 ∉ 𝐴}.

• monotone increasing: 𝐴1 ⊂ 𝐴2 ⊂ … and define limit

lim
𝑛→∞

𝐴𝑛 =
∞

⋃
𝑖=1

𝐴𝑖 .

• monotone decreasing: 𝐴1 ⊃ 𝐴2 ⊃ … and define limit

lim
𝑛→∞

𝐴𝑛 =
∞

⋂
𝑖=1

𝐴𝑖 .

• distributive laws:
𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ,

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) .
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• De Morgan’s laws:
(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 ,

(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 .

We assign probabilities to events in our sample space.

Definition 0.1 (Probability distribution). A probability distribution is a function 𝑃 ∶ Ω → R satisfying
three axioms:

1. 𝑃 (𝐴) ≥ 0 for every 𝐴 ⊂ Ω (positivity),
2. 𝑃 (Ω) = 1 (totality),
3. if 𝐴1, 𝐴2, … are disjoint subsets of Ω, then

𝑃 (∪∞
𝑖=1𝐴𝑖) =

∞

∑
𝑖=1

𝑃 (𝐴𝑖) .

Perspectives

We can interpret 𝑃 (𝐴) as representing:

• frequency, i.e., the long-run proportion of times 𝐴 is true (the frequentist perspective),
• degrees of belief, i.e, as a measure of the observer’s strength of belief that 𝐴 is true (the

Bayesian perspective).

Theorem 0.1 (PIE). The principal of inclusion-exclusion,

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) .

Theorem 0.1 follows from the definition of a probability distributions and facts about set theory.

Definition 0.2 (Probability of an event). For events 𝐴 from finite sample spaces Ω, we assign probabilities
according to:

𝑃 (𝐴) = |𝐴|
|Ω| .

For finite sample spaces, we assign probabilities according to their long-run frequency of occurring. For
an event 𝐴, this is the ratio of the size of 𝐴 (number of ways 𝐴 can happen) to the size of Ω (number of
total outcomes).

Definition 0.3 (Independent events). Events 𝐴 and 𝐵 are independent, i.e., 𝐴 ⟂⟂ 𝐵, iff 𝑃 (𝐴 ∩ 𝐵) =
𝑃 (𝐴)𝑃 (𝐵).

That is, events 𝐴 and 𝐵 are independent if and only if the probability of 𝐴 and 𝐵 occurring is equal to the
the probability 𝐴 occurring times the probability of 𝐵 occurring.

Definition 0.4 (Conditional probability). If 𝑃 (𝐵) > 0, then

𝑃 (𝐴 ∣ 𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵) .
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Note that:

• 𝑃 (⋅ ∣ 𝐵) satisfies the axioms of probability, for fixed 𝐵,
• in general, 𝑃 (𝐴 ∣ ⋅) is not a probability for fixed 𝐴, and,
• in general, 𝑃 (𝐴 ∣ 𝐵) ≠ 𝑃 (𝐵 ∣ 𝐴).

Theorem 0.2 (Bayes Theorem). Let events 𝐴1, … , 𝐴𝑘 partition Ω, with 𝑃 (𝐴𝑖) > 0.

If 𝑃 (𝐵) > 0, then
𝑃 (𝐴𝑖 ∣ 𝐵) = 𝑃 (𝐵 ∣ 𝐴𝑖)𝑃 (𝐴𝑖)

∑𝑗 𝑃 (𝐵 ∣ 𝐴𝑗)𝑃 (𝐴𝑗) .

Generally, it is not feasible to assign probabilities to all subsets of Ω (e.g., if �is infinite). In that case, we
restrict to our attention to a 𝜎-algebra 𝒜 (also called, 𝜎-field), which is a collection of sets satisfying:

1. ∅ ∈ 𝒜,
2. if 𝐴1, 𝐴2, … , ∈ 𝒜 then ∪∞

𝑖=1𝐴𝑖 ∈ 𝒜, 3.𝐴 ∈ 𝒜 ⟹ 𝐴𝑐 ∈ 𝒜 .

Sets in 𝒜 are said to be measurable and (Ω, 𝒜) is a measure space. If 𝑃 is a probability defined on 𝒜,
then (Ω, 𝒜 , 𝑃 ) is called a probability space.

E.g., when Ω ≡ R, we take 𝒜 to be the smallest 𝜎-field containing all open subsets of R, which is called
the Borel 𝜎-field. If you find these details interesting, take: MA42008 Mathematical Statistics!

Random variables

How do we link sample spaces and events to data?

We use random variables to link sample spaces and events to data.

Definition 0.5 (Random variables). A random variable (rv) is a mapping 𝑋 ∶ Ω → R that maps 𝜔 ∈
Ω ↦ 𝑋(𝜔).

Example 0.2. Consider a coin flipping experiment where you flip a fair coin eight times. Let 𝑋 be the
number of heads in the sequence. If three heads occur, e.g., 𝜔 = 𝐻𝑇 𝑇 𝑇 𝑇 𝑇 𝐻𝐻, then 𝑋(𝜔) = 3.

Example 0.3. Consider an experiment where you draw a point a random from the unit disk. Then Ω =
{(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 1} and a typical outcome will be the pair 𝜔 = (𝑥, 𝑦). Some random variables to
consider are 𝑋(𝜔) = 𝑥, 𝑌 (𝜔) = 𝑦, 𝑍(𝜔) = 𝑥 + 𝑦, and 𝑊 (𝜔) = √𝑥2 + 𝑦2.

Definition 0.6 (Assigning probabilities to rvs). Given 𝑋 and 𝐴 ⊂ R, we define

𝑋−1(𝐴) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴}

and let
𝑃 (𝑋 ∈ 𝐴) = 𝑃 (𝑋−1(𝐴)) = 𝑃 ({𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴}) ,

e.g., 𝑃 (𝑋 = 𝑥) = 𝑃 (𝑋−1(𝑥)) = 𝑃 ({𝜔 ∈ Ω ∶ 𝑋(𝜔) = 𝑥}).
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Observations vs rvs

𝑋 denotes a rv and 𝑥 denotes a particular value of 𝑋.

We measure probabilities of events

A rv 𝑋 by itself is not an event. You would never write 𝑃 (𝑋), would you!?

Example 0.4. Consider a coin flipping experiment where you flip a fair coin twice. Let 𝑋 be the number
of heads. Then

𝑃 (𝑋 = 0) = 𝑃 ({𝑇 𝑇 }) = 1
4 ,

𝑃 (𝑋 = 1) = 𝑃 ({𝐻𝑇 } ∪ {𝑇 𝐻}) = 𝑃 ({𝐻𝑇 }) + 𝑃 ({𝑇 𝐻}) = 1
2 ,

𝑃 (𝑋 = 2) = 𝑃 ({𝐻𝐻}) = 1
4 .

Definition 0.7 (Cdf). The cumulative distribution function (cdf), 𝐹𝑋 ∶ R → [0, 1], is defined by 𝐹𝑋(𝑥) =
𝑃 (𝑋 ≤ 𝑥).

Figure 1 displays the cdf for the coin flip experiment considered in Example 0.4. The cdf 𝐹𝑋(𝑥) jumps
at 𝑥 = 0, 𝑥 = 1, and 𝑥 = 2. The height of the jumps are given by 𝑃 (𝑋 = 𝑥). We observe as well
that 𝐹𝑋(𝑥) = 0 for 𝑥 < 0, as no probability has been accumulated; recall that probabilities are always
non-negative, so a function that accumulates probability will always be non-negative. Further, 𝐹𝑋(𝑥) = 1
for 𝑥 ≥ 2, as all the probability has been accumulated; remember that the total probability that can be
assigned over the whole sample space must sum to one.

0.00

0.25

0.50

0.75

1.00

x

F
X
(x

)

Figure 1: The cdf for the two coin flip example.

Note that a cdf completely determines the distribution of a random variable. This statement is captured
in Theorem 0.3.
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Theorem 0.3. Let 𝑋 have cdf 𝐹 and 𝑌 have cdf 𝐺. If 𝐹 (𝑥) = 𝐺(𝑥) for all 𝑥, then 𝑃 (𝑋 ∈ 𝐴) = 𝑃 (𝑌 ∈
𝐴)∀𝐴 ∈ R.

Since cdfs determine or characterize a probability distribution, it is useful to know the key properties of
cdfs, which are listed below in Theorem 0.4.

Theorem 0.4 (Properties of cdfs). 𝐹 ∶ R → [0, 1] is a cdf for some 𝑃 iff,

1. 𝐹 is nondecreasing (i.e., 𝑥1 < 𝑥2 ⟹ 𝐹 (𝑥1) ≤ 𝐹 (𝑥2)),
2. 𝐹 is normalized to [0, 1] (i.e., lim𝑥→−∞ 𝐹 (𝑥) = 0 and lim𝑥→∞ 𝐹 (𝑥) = 1),
3. 𝐹 is right-continuous (i.e., 𝐹 (𝑥) = 𝐹 (𝑥∗)∀𝑥 where 𝐹 (𝑥∗) = lim𝑦>𝑥;𝑦→𝑥 𝐹 (𝑦)).

For a rv 𝑋 we say 𝑋 is discrete if it assumes at most a countable number of (discrete) values. For a
discrete sample space, the collection of all probabilities of 𝑋(𝜔) gives us a probability distribution.

Definition 0.8 (Pmf). A pdf for a discrete rv 𝑋 is 𝑓𝑋(𝑥) = 𝑃 (𝑋 = 𝑥). Since this density function places
a “point mass” at each 𝑥, it is sometimes referred to as a probability mass function (pmf).

Figure 2 displays the pmf for the coin flip experiment considered in Example 0.4. The pmf is a histogram
with point masses at 𝑥 = 0, 𝑥 = 1, and 𝑥 = 2. The mass placed at these points is given by 𝑃 (𝑋 = 𝑥).
Since the pmf is a pdf for a discrete random variable, recall from the axioms of probability that the
pmf therefore satisfies 𝑓(𝑥) ≥ 0, ∀𝑥 ∈ R, and ∑𝑖 𝑓(𝑥𝑖) = 1. This fact can be observed in Figure 2:
𝑓𝑋(0) + 𝑓𝑋(1) + 𝑓𝑋(2) = 0.25 + 0.5 + 0.25 = 1.
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Figure 2: The histogram (pmf) for the two coin flip example.

A rv 𝑋 is continuous if there exists a continuous function 𝑓𝑋 such that,

1. 𝑓𝑋(𝑥) ≥ 0∀𝑥,
2. ∫∞

−∞ 𝑓𝑋(𝑥)𝑑𝑥 = 1 and
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3. 𝑃 (𝑎 < 𝑋 < 𝑏) = ∫𝑏
𝑎 𝑓𝑋(𝑥)𝑑𝑥, for 𝑎 ≤ 𝑏.

Definition 0.9 (Pdf). A 𝑓𝑋 satisfying the three properties above is a pdf for the continous rv 𝑋.

Events of probability zero

If 𝑋 is continuous, then 𝑃 (𝑋 = 𝑥) = 0 for every 𝑥. That is,

𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃 (𝑎 ≤ 𝑋 < 𝑏) = 𝑃 (𝑎 < 𝑋 < 𝑏), .

The cdf is related to the pdf by the derivative (difference). If 𝑋 is continuous:

𝐹𝑋(𝑥) = 𝑃 (𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓𝑋(𝑡)𝑑𝑡

and 𝑓𝑋(𝑥) = 𝐹 ′
𝑋(𝑥) at all 𝑥 at which 𝐹𝑋 is differentiable. (Likewise, if 𝑋 is discrete, then we replace the

integral with a sum 𝐹𝑋(𝑥) = 𝑃 (𝑋 ≤ 𝑥) = ∑𝑥𝑖≤𝑥 𝑓𝑋(𝑥𝑖).)

Definition 0.10 (Quantile function). Let 𝑋 be a rv with cdf 𝐹 . The inverse cdf, or quantile function, is
defined by

𝐹 −1(𝑞) = inf{𝑥 ∶ 𝐹 (𝑥) > 𝑞}
for 𝑞 ∈ [0, 1]. If 𝐹 is monotonic increasing and continuous then 𝐹 −1(𝑞) is the unique real number 𝑥 such
that 𝐹 (𝑥) = 𝑞.

Some quantiles get used more than others (and therefore get names). Important quantiles include, 𝐹 −1( 1
4 )

is the first quantile, 𝐹 −1( 1
2 ) is the median, and 𝐹 −1( 3

4 ) is the third quantile.

Definition 0.11 (Equality in distribution). We say 𝑋 and 𝑌 are equal in distribution, 𝑋 ≡ 𝑌 , if 𝐹𝑋(𝑥) =
𝐹𝑌 (𝑥) for all 𝑥.

Equality in distribution versus equality of rvs

Note that equality in distribution does not mean that the random variables are the same. Rather,
probability statements are the same.
Consider the following example. Suppose

𝑃 (𝑋 = 1) = 𝑃 (𝑋 = −1) = 1
2 .

Let 𝑌 = −𝑋. Then
𝑃 (𝑌 = 1) = 𝑃 (𝑌 = −1) = 1

2 .

Thus,
𝑋 ≡ 𝑌 ,

but 𝑋 and 𝑌 are not equal! In fact, 𝑃 (𝑋 = 𝑌 ) = 0.

We sometimes consider more than one random variable, taken to together. This leads to the concept of a
joint and marginal densities.

Definition 0.12 (Joint pdf). A joint pdf for (𝑋, 𝑌 ) satisfies
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1. 𝑓(𝑥, 𝑦) ≥ 0 ∀𝑥, 𝑦,
2. ∬∞

−∞ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1,
3. for 𝐴 ∈ R × R, 𝑃 ((𝑋, 𝑌 ) ∈ 𝐴) = ∬𝐴 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

Definition 0.13 (Joint cdf). A joint cdf is given by 𝐹 (𝑥, 𝑦) = 𝑃 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).

Definition 0.14 (marginal pdf). For 𝑋, 𝑌 with joint pdf 𝑓(𝑥, 𝑦), we define the marginals for 𝑋 and 𝑌 as
𝑓𝑋(𝑥) ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 and 𝑓𝑌 (𝑦) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥, respectively.

We also have a notion of independence for two rvs.

Definition 0.15 (Independence of rvs). Rvs 𝑋 and 𝑌 are independent if 𝑃 (𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵) = 𝑃 (𝑋 ∈
𝐴)𝑃 (𝑌 ∈ 𝐵).

Theorem 0.5. Let 𝑋, 𝑌 have joint 𝑓𝑋𝑌 . Then 𝑋 and 𝑌 are independent iff 𝑓𝑋𝑌 = 𝑓𝑋 ⋅ 𝑓𝑌 for all 𝑥, 𝑦.

If 𝑋1, … 𝑋𝑛 are independent and each as the same marginal distribution with cdf 𝐹 , we say 𝑋1, … , 𝑋𝑛
are iid and write 𝑋1, … , 𝑋𝑛 ∼ 𝐹 iid. We also write 𝑋1, … , 𝑋𝑛 ∼ 𝑓 if 𝐹 has corresponding density 𝑓,
when no confusion arises. We will often consider collections of iid random variables.

Definition 0.16 (Random sample). 𝑋1, … , 𝑋𝑛 ∼ 𝐹 iid is a random sample of size 𝑛 from a distribution
𝐹 .

We also consider the expected value of a rv.

Definition 0.17 (Expectation). For a discrete rv 𝑋 with possible outcomes 𝑥1, 𝑥2, … and corresponding
probabilities 𝑝1, 𝑝2, … , the expectation is defined by

E[𝑋] =
∞

∑
𝑖=1

𝑥𝑖𝑝𝑖 .

For a continuous rv 𝑋 with pdf 𝑓, the expectation is defined by

E[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 .

For both discrete and continuous rvs, we refer to various statistics relating to expected values as moments
of the distribution.

Definition 0.18 (𝑛-th raw moment). For a rv 𝑋, the 𝑛-th raw moment is given by E[𝑋𝑛].

Definition 0.19 (𝑛-th central moment). For a rv 𝑋 with 𝜇 = E[𝑋], the 𝑛-th central moment is defined as
E[(𝑋 − 𝜇)𝑛].

19



Table 2: First few moments for a rv 𝑋 with mean 𝜇 = E[𝑋].

(a) Quantities related to raw moments

Expression Name
E[𝑋] mean
E[𝑋2] —
E[𝑋3] —
E[𝑋4] —

(b) Quantities related to central moments

Expression Name
E[(𝑋 − 𝜇)] —
E[(𝑋 − 𝜇)2] variance

E[(𝑋 − 𝜇)3/𝜎3] (Fisher’s) skewness
E[(𝑋 − 𝜇)4/𝜎4] kurtosis

The mean of a distribution is the first raw moment. The variance of a distribution is the second central
moment. Quantities related to higher order central moments are also of interest; Table 2 lists some of these
with associated “names” that you might encounter. Variance is a measure of dispersion about the mean.
Skewness is a measure of the lopsidedness of a distribution. If a distribution is symmetric (and its third
central moment is defined) then it will have skewness equal to zero. A distribution that is skewed to the
left (i.e., the tail of the distribution is longer on the left) will have negative skewness and a distribution that
is skewed to the right (i.e., the tail of the distribution is longer on the right) will have positive skewness.
Kurtosis is a measure of how “fat” or “heavy” the tails of a distribution are; distributions with heavy
tails will have high kurtosis values. Since variance and kurtosis are related to the even-powered central
moments, they will always be non-negative.

Its all Greek … when it comes to kurtosis

The root of kurtosis comes from the Greek word for “bulging” or “convex”. You may see a heavy-
tailed or high kurtosis distributions described as leptokurtic (“narrow” + “bulging”) and a light-
tailed or low kurtosis distributions described as platykurtic (“broad” or “flat” + “bulging”). The
“high” and “low” qualifications are made in relation to the tails of the normal distribution; a distri-
bution having the same kurtosis as the normal distribution can be described asmesokurtic (“middle”
+ “bulging”).
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1 Sampling distributions

A statistic is a quantity that can be calculated from sample data. Before observing data, a statistic is an
unknown quantity and is, therefore, a rv.

Definition 1.1 (Statistic). Let 𝑋1, … , 𝑋𝑛 be observable rvs and let 𝑔 be an arbitrary real-valued function
of 𝑛 random variables. The rv

𝑇 = 𝑔(𝑋1, … , 𝑋𝑛)
is a statistic.

We refer to the probability distribution for a statistic as a sampling distribution. The sampling distribution
illustrates how the statistic will vary across possible sample data. The sampling distribution contains
information about the values a statistic is likely to assume and how likely it is to assume those values
prior to observing data.

Definition 1.2 (Sampling distribution). Suppose rvs 𝑋1, … , 𝑋𝑛 are a random sample from 𝐹 (𝜃), a distri-
bution depending a parameter 𝜃 whose value is uknown. Let the rv

𝑇 = 𝑔(𝑋1, … , 𝑋𝑛, 𝜃)
be a function of 𝑋1, … , 𝑋𝑛 and (possibly) 𝜃. The distribution of 𝑇 (given 𝜃) is the sampling distribution
of 𝑇 .

The sampling distribution of 𝑇 is derived from the distribution of the random sample. Often we will be
interested in a statistic 𝑇 that is an estimator for a parameter 𝜃 (that is, 𝑇 will not depend on 𝜃).

In what follows, we review several special families of distributions that are widely used in probability and
statistics. These special families of distributions will be indexed by one or parameters.

1.1 Uniform distribution

The uniform distribution places equal on uniform weight on the items being sampled.

Definition 1.3 (Uniform distribution). A continuous rv 𝑋 has a uniform distribution on [𝑎, 𝑏] with 𝑎 < 𝑏,
if 𝑋 has pdf

𝑓(𝑥; 𝑎, 𝑏) = 1
𝑏 − 𝑎 , 𝑎 < 𝑥 < 𝑏 ,

or zero otherwise. We write 𝑋 ∼ Unif(𝑎, 𝑏).

Parameters

Note that 𝑎 and 𝑏 are parameters in Definition 1.3.

Exercise 1.1. As an exercise, derive the cdf using the definition. Derive a formula for the mean and
variance in terms of the parameters 𝑎 and 𝑏.
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1.2 Normal distribution

Normal distributions play an important role in probability and statistics as they describe many natural
phenomena. For instance, the Central Limit Theorem tells us that the sample mean of a large random
sample (size 𝑚) of rvs with mean 𝜇 and variance 𝜎2 is approximately normal in distribution with mean 𝜇
and variance 𝜎2/𝑚.

Definition 1.4 (Normal or Gaussian distribution). A continuous rv 𝑋 has a normal distribution with
parameters 𝜇 and 𝜎2, where −∞ < 𝜇 < ∞ and 𝜎 > 0, if 𝑋 has pdf

𝑓(𝑥; 𝜇, 𝜎) = 1
√2𝜋𝜎

𝑒−(𝑥−𝜇)2/(2𝜎2) , −∞ < 𝑥 < ∞ .

We write 𝑋 ∼ N(𝜇, 𝜎2).

For 𝑋 ∼ N(𝜇, 𝜎2), it can be shown that E(𝑋) = 𝜇 and Var(𝑋) = 𝜎2, that is, 𝜇 is the mean and 𝜎2

is the variance of 𝑋. The pdf forms a bell-shaped curve that is symmetric about 𝜇, as illustrated in
Figure 1.1. The value 𝜎 (standard deviation) is the distance from 𝜇 to the inflection points of the curve.
As 𝜎 increases, the dispersion in the density increases, as illustrated in Figure 1.2. Thus, the distribution’s
position (location) and spread depend on 𝜇 and 𝜎.
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Figure 1.1: The pdfs of two normal rvs, 𝑋1 ∼ N(−2, 1) and 𝑋2 ∼ N(2, 1), with different means and the
same standard deviations.

Definition 1.5 (Standard normal distribution). We say that 𝑋 has a standard normal distribution if 𝜇 = 0
and 𝜎 = 1 and we will usually denote standard normal rvs by

𝑍 ∼ N(0, 1)
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Figure 1.2: The pdfs of two normal rvs, 𝑋1 ∼ N(0, 9) and 𝑋2 ∼ N(0, 1), with the same means and different
standard deviations.

(why 𝑍? tradition!1). We denote the cdf of the standard normal by

Φ(𝑧) = 𝑃 (𝑍 ≤ 𝑧)

and write 𝜑 = Φ′ for its density function.

Useful facts about normal variates

1. If 𝑋 ∼ N(𝜇, 𝜎2), then
𝑍 = (𝑋 − 𝜇)/𝜎 ∼ N(0, 1).

2. If 𝑍 ∼ N(0, 1), then
𝑋 = 𝜇 + 𝜎𝑍 ∼ N(𝜇, 𝜎2).

3. If 𝑋𝑖 ∼ N(𝜇𝑖, 𝜎2
𝑖 ) for 𝑖 = 1, … , 𝑛 are independent rvs, then

𝑛

∑
𝑖=1

𝑋𝑖 ∼ N
(

𝑛

∑
𝑖=1

𝜇𝑖,
𝑛

∑
𝑖=1

𝜎2
𝑖 )

.

Variances add

In particular, for differences of independent rvs 𝑋1 ∼ N(𝜇1, 𝜎2
1) and 𝑋2 ∼ N(𝜇2, 𝜎2

2) then the vari-

1“Traditions, traditions… Without our traditions, our lives would be as shaky as a fiddler on the roof!” [https://www.youtube.
com/watch?v=gRdfX7ut8gw].
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ances add:
𝑋1 − 𝑋2 ∼ N(𝜇1 − 𝜇2, 𝜎2

1 + 𝜎2
2) .

Probabilities 𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) are found by converting the problem in 𝑋 ∼ N(𝜇, 𝜎2) to the standard normal
distribution 𝑍 ∼ N(0, 1) whose probability values Φ(𝑧) = 𝑃 (𝑍 ≤ 𝑧) can then be looked up in a table.
From (1.) above,

𝑃 (𝑎 < 𝑋 < 𝑏) = 𝑃 (
𝑎 − 𝜇

𝜎 < 𝑍 < 𝑏 − 𝜇
𝜎 )

= Φ (
𝑏 − 𝜇

𝜎 ) − Φ (
𝑎 − 𝜇

𝜎 ) .

This process is often referred to as standardising (the normal rv).

Example 1.1. Let 𝑋 ∼ N(5, 9) and find 𝑃 (𝑋 ≥ 5.5).

𝑃 (𝑋 ≥ 5.5) = 𝑃 (𝑍 ≥ 5.5 − 5
3 )

= 𝑃 (𝑍 ≥ 0.1667)
= 1 − 𝑃 (𝑍 ≤ 0.1667)
= 1 − Φ(0.1667)
= 1 − 0.5662
= 0.4338 ,

where we look up the value of Φ(𝑧) = 𝑃 (𝑍 ≤ 𝑧) in a table of standard normal curve areas.

The probability corresponds to the shaded area under the normal density 𝜑(𝑥) = Φ′(𝑥) corresponding to
𝑥 ≥ 5.5 (see Figure 1.3). To calculate this area, we can also use the R code: pnorm(5.5, mean = 5, sd
= 3, lower.tail = FALSE).

Example 1.2. Let 𝑋 ∼ N(5, 9) and find 𝑃 (4 ≤ 𝑋 ≤ 5.25).

𝑃 (4 ≤ 𝑋 ≤ 5.25) = 𝑃 (
4 − 5

3 ≤ 𝑍 ≤ 5.25 − 5
3 )

= 𝑃 (−0.3333 ≤ 𝑍 ≤ 0.0833)
= Φ(0.0833) − Φ(−0.3333)
= 0.5332 − 0.3694
= 0.1638 .

where we look up the value of Φ(𝑧) = 𝑃 (𝑍 ≤ 𝑧) in a table of standard normal curve areas.

The probability corresponds to the shaded area under the normal density 𝜑(𝑥) = Φ′(𝑥) corresponding to
4 ≤ 𝑥 ≤ 5.25 (see Figure 1.4). To calculate this area, we can use the R code: pnorm(5.25, mean = 5, sd
= 3) - pnorm(4, mean = 5, sd = 3).

Empirical rule (68 − 95 − 99.7 rule)

For samples from a normal distribution, the percentage of values that lie within one, two, and
three standard deviations of the mean are 68.27%, 95.45%, and 99.73%, respectively. That is, for
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x ≥ 5.5

X ~ N(5, 9)

Figure 1.3: The normal density N(5, 9) with the (one-sided) interval shaded in blue that corresponds to
the probability 𝑃 (𝑋 ≥ 5.5).

4 ≤ x ≤ 5.25

X ~ N(5, 9)

Figure 1.4: The normal density N(5, 9) with the (two-sided) interval shaded in blue that corresponds to
the probability 𝑃 (4 ≤ 𝑋 ≤ 5.25).

25



𝑋 ∼ N(𝜇, 𝜎2),
𝑃 (𝜇 − 1𝜎 ≤ 𝑋 ≤ 𝜇 + 1𝜎) ≈ 0.6827 ,

𝑃 (𝜇 − 2𝜎 ≤ 𝑋 ≤ 𝜇 + 2𝜎) ≈ 0.9545 ,

𝑃 (𝜇 − 3𝜎 ≤ 𝑋 ≤ 𝜇 + 3𝜎) ≈ 0.9973 .

For a normal population, nearly all the values lie within “three sigmas” of the mean.

1.3 Student’s t distribution

Student’s t distribution gets its peculiar name as it was first published under the pseudonym “Student”.2
This bit of obfuscation was to protect the identity of his employer,3 and thereby vital trade secrets, in a
highly competitive and lucrative industry.

Definition 1.6 (Student’s t distribution). A continuous rv 𝑋 has a t distribution with parameter 𝜈 > 0, if
𝑋 has pdf

𝑓(𝑥; 𝜈) =
Γ (

𝜈+1
2 )

√𝜈𝜋Γ (
𝜈
2 )

(1 + 𝑥2

𝜈 )
− 𝜈+1

2 , −∞ < 𝑥 < ∞ .

We write 𝑋 ∼ t(𝜈). Note Γ is the standard gamma function.4

The density for t(𝜈) for several values of 𝜈 are plotted below in Figure 1.5.

Properties of t distributions

1. The density for t(𝜈) is a bell-shaped curve centred at 0.
2. The density for t(𝜈) is more spread out than the standard normal density (i.e., it has “fatter

tails” than the normal).
3. As 𝜈 → ∞, the spread of the corresponding t(𝜈) density converges to the standard normal

density (i.e., the spread of the t(𝜈) density decreases relative to the standard normal).

If 𝑋 ∼ t(𝜈), then E[𝑋] = 0 for 𝜈 > 1 (otherwise the mean is undefined).

Cauchy distribution

A t distributions with 𝜈 = 1 has pdf

𝑓(𝑥) = 1
𝜋(1 + 𝑥2)

,

and we call this the Cauchy distribution.

2William Sealy Gosset (1876–1937) wrote under the pseudonym “Student” [https://mathshistory.st-andrews.ac.uk/Biograph
ies/Gosset/].

3Gosset invented the t-test to handle small samples for quality control in brewing, specifically for the Guinness brewery in
Dublin [https://www.wikiwand.com/en/Guinness_Brewery].

4The gamma function is defined by Γ(𝑧) = ∫∞
0 𝑥𝑧−1𝑒−𝑥𝑑𝑥 when the real part of 𝑧 is positive. For any positive integer 𝑛,

Γ(𝑛) = (𝑛 − 1)! and for half-integers Γ( 1
2 + 𝑛) = (2𝑛)!

4𝑛𝑛! √𝜋.
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Figure 1.5: The density for t(𝜈) for several values of 𝜈 (df).

1.4 𝜒2 distribution

The 𝜒2 distribution arises as the distribution of a sum of the squares of 𝜈 independent standard normal
rvs.

Definition 1.7 (𝜒2 distribution). A continuous rv 𝑋 has a 𝜒2 distribution with parameter 𝜈 ∈ N>, if 𝑋
has pdf

𝑓(𝑥; 𝜈) = 1
2𝜈/2Γ(𝜈/2)

𝑥(𝜈/2)−1𝑒−𝑥/2 ,

with support 𝑥 ∈ (0, ∞) if 𝜈 = 1, otherwise 𝑥 ∈ [0, ∞). We write 𝑋 ∼ 𝜒2(𝜈).

The pdf 𝑓(𝑥; 𝜈) of the 𝜒2(𝜈) distribution depends on a positive integer 𝜈 referred to as the df. The densities
for several values of 𝜈 are plotted below in Figure 1.6. The density 𝑓(𝑥; 𝜈) is positively skewed, i.e., the
right tail is longer, so the mass is concentrated to the figure’s left in Figure 1.6. The distribution becomes
more symmetric as 𝜈 increases. We denote critical values of the 𝜒2(𝜈) distribution by 𝜒2

𝛼,𝜈 .

Skew

Unlike the normal and 𝑡 distributions, the 𝜒2 distribution is not symmetric! This means that critical
values, e.g.,

𝜒2
.99,𝜈 and 𝜒2

0.01,𝜈 ,

are not equal. Hence, it will be necessary to look up both values for CIs based on 𝜒2 critical values.

If 𝑋 ∼ 𝜒2(𝜈), then E[𝑋] = 𝜈 and Var[𝑋] = 2𝜈.
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Figure 1.6: The density for 𝜒2(𝜈) for several values of 𝜈 (df).

1.5 F distribution

The F distribution (“F” for Fisher) arises as a test statistic when comparing population variances and in
the analysis of variance (see @sec-anova).

Definition 1.8 (F distribution). A continuous rv 𝑋 has an F distribution with df parameters 𝜈1 and 𝜈2, if
𝑋 has pdf

𝑓(𝑥; 𝜈1, 𝜈2) =
Γ (

𝜈1+𝜈2
2 ) 𝜈𝜈1/2

1 𝜈𝜈2/2
2

Γ (
𝜈1
2 ) Γ (

𝜈2
2 )

𝑥𝜈1/2−1

(𝜈2 + 𝜈1𝑥)(𝜈1+𝜈2)/2 .

The pdf 𝑓(𝑥; 𝜈1, 𝜈2) of the F(𝜈1, 𝜈2) distribution depends on two positive integers 𝜈1 and 𝜈2 referred to,
respectively, as the numerator and denominator df. The density is plotted below for several combinations
of (𝜈1, 𝜈2) in Figure 1.7.

Where do the terms numerator and denominator df come from?

The F distribution is related to ratios of 𝜒2 rvs, as captured in Theorem 1.1.

Theorem 1.1 (Ratio of 𝜒2 rvs). If 𝑋1 ∼ 𝜒2(𝜈1) and 𝑋2 ∼ 𝜒2(𝜈2) are independent rvs, then the rv

𝐹 = 𝑋1/𝜈1
𝑋2/𝜈2

∼ F(𝜈1, 𝜈2) ,

that comprises the ratio of two 𝜒2 rvs divided by their respective df has an F(𝜈1, 𝜈2) distribution.
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Figure 1.7: The density for F(𝜈1, 𝜈2) for several combinations of (𝜈1, 𝜈2).
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2 Basics of statistical inference

We discuss point estimation, confidence intervals, and hypothesis testing in Sections Section 2.1, Sec-
tion 2.2, and Section 2.3, respectively. These three tools will form the basis for making inferences about
a population.

2.1 Point estimation

Statistical inference seeks to draw conclusions about the characteristics of a population from data. For
example, suppose we are botanists interested in the taxonomic classification of iris flowers. Let 𝜇 denote
the true average petal length (in cm) of the Iris setosa1 (AKA the bristle-pointed iris). The parameter 𝜇
is a characteristic of the whole population of the setosa species. Before we collect data, the petal lengths
of 𝑚 independent setosa flowers are denoted by rvs 𝑋1, 𝑋2, … , 𝑋𝑚. Any function of the 𝑋𝑖’s, such as the
sample mean,

𝑋 = 1
𝑚

𝑚

∑
𝑖=1

𝑋𝑖 , (2.1)

or the sample variance,

𝑆2 = 1
𝑚 − 1

𝑚

∑
𝑖=1

(𝑋𝑖 − 𝑋)2 , (2.2)

is also a rv.

Suppose we actually find and measure the petal length of 50 independent setosa flowers resulting in
observations 𝑥1, 𝑥2, … , 𝑥50; the distribution (counts) of 50 such petal length measurements are displayed
in Figure 2.1. The sample mean 𝑥 for petal length can then be used to draw a conclusion about the (true)
value of the population mean 𝜇. Based on the data in Figure 2.1 and using Equation 2.1, the value of the
sample mean is 𝑥 = 1.462. The value 𝑥 provides a “best guess” or point estimate for the true value of 𝜇
based on the 𝑚 = 50 samples.

Loading datasets

The datasets package has a variety of datasets that you can play with. Once installed, data sets can
be accessed in R by loading library(datasets) and then calling, e.g., data(iris) to see the iris
data set. For a full list of available data sets, call library(help = "datasets") from the console.

Note 1: Iris Data

The botanist Edgar Anderson’s Iris Data contains 50 obs. of four features (sepal length [cm], sepal
width [cm], petal length [cm], and petal width [cm]) for each of three plant species (setosa, virginica,
versicolor) for 150 obs. total.

1More about the Iris setosa here [https://www.wikiwand.com/en/Iris_setosa].

30

https://www.wikiwand.com/en/Iris_setosa


0

5

10

1.00 1.25 1.50 1.75 2.00
Petal Length [cm]

C
ou

nt

Species

setosa

Sample stats

mean

mean − 2sd

Figure 2.1: The distribution (counts) of 𝑚 = 50 setosa petal length measurments.

iris |> glimpse()

Rows: 150
Columns: 5
$ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.~
$ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.~
$ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.~
$ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.~
$ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, setosa, set~

Definition 2.1 (Point estimate). A point estimate of a parameter 𝜃 (recall: a parameter is a fixed, unknown
quantity) is a single number that we consider a reasonable value for 𝜃. Consider

iid 𝑋1, 𝑋2, … , 𝑋𝑚 ∼ 𝐹 (𝜃) .

A point estimator ̂𝜃𝑚 of 𝜃 is obtained by selecting a suitable statistic 𝑔,

̂𝜃𝑚 = 𝑔(𝑋1, … , 𝑋𝑚) .

A point estimate ̂𝜃𝑚 can then be computed from the estimator using sample data.

Overloaded notation

The symbol ̂𝜃𝑚 (or simply ̂𝜃 when the sample size 𝑚 is clear from context) is typically used to denote
both the estimator and the point estimate resulting from a given sample.

Best practice for reporting

Writing, e.g., ̂𝜃 = 42 does not indicate how the point estimate was obtained. Therefore, it is essential
to report both the estimator and the resulting point estimate.
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Table 2.1: Observations of 𝑚 = 31 felled black cherry trees.

Height [in]
63, 64, 65, 66, 69, 70, 71, 72, 72, 74, 74, 75, 75, 75, 76, 76, 77, 78, 79, 80, 80, 80, 80, 80, 81, 81,
82, 83, 85, 86, 87

Definition 2.1 does not say how to select an appropriate statistic. For the setosa example, the sample
mean 𝑋 is suggested as a good estimator of the population mean 𝜇. That is, 𝜇 = 𝑋 or:

“the point estimator of 𝜇 is the sample mean 𝑋”.

Here, while 𝜇 and 𝜎2 are fixed quantities representing population characteristics, 𝑋 and 𝑆2 are rvs with
sampling distributions. If the population is normally distributed or if the sample is large then the sampling
distribution for 𝑋 has a known form:

𝑋 ∼ N(𝜇, 𝜎2/𝑚) ,

that is, 𝑋 is normal with mean 𝜇𝑋 = 𝜇 and variance 𝜎2
𝑋

= 𝜎2/𝑚 where 𝑚 is the sample size and 𝜇 and 𝜎
are the (typically unknown) population parameters.

Note 2: Cherry Tree Data

The Cherry Tree Data contains 31 obs. of three features (diameter, height, and volume).

trees |> glimpse()

Rows: 31
Columns: 3
$ Girth <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0, 11.0, 11.1, 11.2, 11.3, 11.4, 11.4~
$ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69, 75, 74, 85, 86, 7~
$ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6, 18.2, 22.6, 19.9, 24.2, 21.0, 2~

Example 2.1. Let us consider the heights (measured in inches) of 31 black cherry trees (sorted, for your
enjoyment) in Table 2.1.

The quantile-quantile plot in Figure 2.2, which compares the quantiles of this data to the quantiles of a nor-
mal distribution, is fairly straight. Therefore, we assume that the distribution of black cherry tree heights
is (at least approximately) normal with a mean value 𝜇; i.e., that the population of heights is distributed
N(𝜇, 𝜎2), where 𝜇 is a parameter to be estimated and 𝜎2 is unknown. The observations 𝑋1, … , 𝑋31 are
then assumed to be a random sample from this normal distribution,

iid 𝑋1, … , 𝑋31 ∼ N(𝜇, 𝜎2) .

Consider the following three different estimators and the resulting point estimates for 𝜇 based on the 31
samples in Table 2.1.

a. Estimator (sample mean) 𝑋 as in Equation 2.1 and estimate 𝑥 = ∑ 𝑥𝑖/𝑛 = 2356/31 = 76.

b. Estimator (average of extreme heights) 𝑋 = [min(𝑋𝑖) + max(𝑋𝑖)]/2 and estimate �̃� = (63 + 87)/2 =
75.
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Figure 2.2: Normal quantile-quantile plot for the Height variable (feature) in the Cherry Tree Data.

c. Estimator (10% trimmed mean – i.e., in this instance exclude the smallest and largest three values)
𝑋tr(10) and estimate 𝑥tr(10) = (2356 − 63 − 64 − 65 − 87 − 86 − 85)/25 = 76.24.

Each estimator above uses a different notion of “centre” for the sample data, i.e., represents a different
statistic. An interesting question is: which estimator will tend to produce estimates closest to the true
parameter value? Will the estimators work universally well for all distributions?

How do we tell whether a population is normal?

Constructing a normal quantile-quantile plot (or QQ plot) is one way of assessing whether a nor-
mality assumption is reasonable. A QQ plot compares the quantiles of the sample data 𝑥𝑖 against
the theoretical standard normal quantiles, see Figure 2.2. If the sample data is consistent with a
sample from a normal distribution, the points will lie in a straight line (more or less). The QQ plot
in Figure 2.2 compares quantiles of cherry tree heights from Table 2.1 to normal quantiles. It is
produced using the following code.

trees |> ggplot(aes(sample = Height)) + stat_qq() + stat_qq_line()

The data trees is piped to the command ggplot. For a QQ plot the key aesthetic element is sample;
in this particular instance we set this to Height. The geometry stat_qq() adds the data quantiles
plotted versus the normal quantiles. The geometry stat_qq_line() simply adds the fit line.

Example 2.2. Although probably overkill for this problem, the infer package can be used for point
estimation using the specify and calculate commands as follows:

trees |>
specify(response = Height) |>
calculate(stat = "mean")

Response: Height (numeric)
# A tibble: 1 x 1
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stat
<dbl>

1 76

The response option specifies the variable of interest, and the stat option can be changed to several
quantities of interest.

In addition to reporting a point estimate and its estimator, some indication of its precision should be given.
One measure of the precision of an estimate is its standard error.

Definition 2.2 (Standard error). The standard error of an estimator ̂𝜃 is the standard deviation

𝜎 ̂𝜃 = √Var( ̂𝜃) .

Often, the standard error depends on unknown parameters and must also be estimated. The estimated
standard error is denoted by 𝜎 ̂𝜃 or simply 𝑠 ̂𝜃 .

Alternative notation

The standard error is sometimes denoted se = se( ̂𝜃) and the estimated standard error by ŝe.

2.2 Confidence intervals

An alternative to reporting a point estimate for a parameter is to report an interval estimate suggesting
an entire range of plausible values for the parameter of interest. A confidence interval is an estimate
that makes a probability statement about the interval’s degree of reliability. The first step in computing
a confidence interval is to select the confidence level 𝛼. A popular choice is a 95% confidence interval
which corresponds to level 𝛼 = 0.05.

Definition 2.3 (Confidence interval). A 100(1 − 𝛼)% confidence interval for a parameter 𝜃 is a random
interval

𝐶𝑚 = (𝐿𝑚, 𝑈𝑚) ,

where 𝐿𝑚 = ℓ(𝑋1, … , 𝑋𝑚) and 𝑈𝑚 = 𝑢(𝑋1, … , 𝑋𝑚) are functions of the data, such that

𝑃𝜃(𝐿𝑚 < 𝜃 < 𝑈𝑚) = 1 − 𝛼 ,

for all 𝜃 ∈ Θ.

My favourite interpretation of a confidence interval is due to (Wasserman 2004, p 92):

On day 1, you collect data and construct a 95 percent confidence interval for a parameter
𝜃1. On day 2, you collect new data and construct a 95 percent confidence interval for an
unrelated parameter 𝜃2. On day 3, you collect new data and construct a 95 percent confi-
dence interval for an unrelated parameter 𝜃3. You continue this way constructing confidence
intervals for a sequence of unrelated parameters 𝜃1, 𝜃2, … Then 95 percent of your intervals
will trap the true parameter value. There is no need to introduce the idea of repeating the
same experiment over and over.
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This interpretation clarifies that a confidence interval is not a probability statement about the parameter
𝜃. In Definition 2.3, note that 𝜃 is fixed (𝜃 is not a rv) and the interval 𝐶𝑚 is random. After data has been
collected and a point estimator has been calculated, the resulting CIs either contain the true parameter
value or do not, as illustrated in Figure 2.3.

µ

Figure 2.3: Fifty 95% CIs for a population mean 𝜇. After a sample is taken, the computed interval estimate
either contains 𝜇 or does not (asterisks identify intervals that do not include 𝜇). When drawing
such a large number of 95% CIs, we would anticipate that approximately 5% (ca. 2 or 3) would
fail to cover the true parameter 𝜇.

2.3 Hypothesis testing

Section 2.1 and Section 2.2 reviewed how to estimate a parameter by a single number (point estimate) or
range of plausible values (confidence interval), respectively. Next, we discuss methods for determining
which of two contradictory claims, or hypotheses, about a parameter is correct.
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Definition 2.4 (Null and alternative). The null hypothesis, denoted by 𝐻0, is a claim we initially assume
to be true by default. The alternative hypothesis, denoted by 𝐻𝑎, is an assertion contradictory to 𝐻0.

Typically, we shall consider a hypothesis test concerning a parameter 𝜃 ∈ Θ, i.e., taking values in a
parameter space Θ. The statistical hypotheses are contradictory in that 𝐻0 and 𝐻𝑎 divide Θ into two
disjoint sets. For example, for a statistical inference regarding the equality of a parameter 𝜃 with a fixed
quantity 𝜃0, the null and alternative hypotheses will usually take one of the following forms in Table 2.2.

Table 2.2: Typical null hypothesis and corresponding alternative hypothesis.

Null hypothesis Alternative hypothesis Test form
𝐻0 ∶ 𝜃 = 𝜃0 𝐻𝑎 ∶ 𝜃 ≠ 𝜃0 two-sided test
𝐻0 ∶ 𝜃 ≤ 𝜃0 𝐻𝑎 ∶ 𝜃 > 𝜃0 one-sided test
𝐻0 ∶ 𝜃 ≥ 𝜃0 𝐻𝑎 ∶ 𝜃 < 𝜃0 one-sided test

These hypothesis pairs are associated with either a one-sided or two-sided test; what this means will
become apparent in the sequel. The value 𝜃0, called the null value, separates the alternative from the
null.

Definition 2.5 (Hypothesis test). Ahypothesis test asks if the available data provides sufficient evidence to
reject 𝐻0. If the observations disagree with 𝐻0, we reject the null hypothesis. If the sample evidence does
not strongly contradict 𝐻0, then we continue to believe 𝐻0. The two possible conclusions of a hypothesis
test are: reject 𝐻0 or fail to reject 𝐻0.

“Fail to reject” versus “accept”

We comment that fail to reject 𝐻0 is sometimes phrased as retain 𝐻0 or (perhaps less accurately)
accept 𝐻0.
Why not just accept the null and move on with our lives?
Well, if I search the Highlands for the Scottish wildcat (endangered) and fail to find any, does that
prove they do not exist?

A procedure for carrying out a hypothesis test is based on specifying two additional items: a test statistic
and a corresponding rejection region. A test statistic 𝑇 is a function of the sample data (like an estimator).
The decision to reject or fail to reject 𝐻0 will involve computing the test statistic. The rejection region 𝑅
is the collection of values of the test statistic for which 𝐻0 is to be rejected in favour of the alternative,
e.g.,

𝑅 = {𝑥 ∶ 𝑇 (𝑥) > 𝑐} ,

where 𝑐 is referred to as a critical value. If a given sample falls in the rejection region, we reject 𝐻0. If
𝑋 ∈ 𝑅 (e.g., the calculated test statistic exceeds some critical value), we reject 𝐻0. The alternative is that
𝑋 ∉ 𝑅 and we fail to reject the null in this case.

Two types of errors can be made when carrying out a hypothesis test. The basis for choosing a rejection
region involves considering these errors.

Definition 2.6 (Error types). A type I error occurs if 𝐻0 is rejected when 𝐻0 is actually true. A type II
error is made if we fail to reject 𝐻0 when 𝐻0 is actually false.
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If a test’s maximal type I error is fixed at an acceptably small value, then the type II error decreases
as the sample size increases. In particular, a conclusion is reached in a hypothesis test by selecting a
significance level 𝛼 for the test linked to the maximal type I error rate. Typically, 𝛼 = 0.10, 0.05, 0.01, or
0.001 is selected for the significance level.

Definition 2.7 (𝑃 -value). A 𝑃 -value is the probability, calculated assuming 𝐻0 is true, of obtaining a
value of the test statistic at least as contradictory to 𝐻0 as the value calculated from the sample data.

Smaller 𝑃 -values indicate stronger evidence against 𝐻0 in favor of 𝐻𝑎. If 𝑃 ≤ 𝛼 then we reject 𝐻0 at
significance level 𝛼. If 𝑃 ≥ 𝛼 we fail to reject 𝐻0 at significance level 𝛼.

What a 𝑃 -value isn’t…

The 𝑃 -value is a probability calculated assuming that 𝐻0 is true. However, the 𝑃 -value is not the
probability that:

1. 𝐻0 is TRUE,
2. 𝐻0 is FALSE, or
3. a wrong conclusion is reached.

Proposition 2.1. The hypothesis test procedure that

{
rejects 𝐻0 if 𝑃 ≤ 𝛼,
fails to reject 𝐻0 otherwise,

has 𝑃 (type I error) = 𝛼.

Example 2.3. Churchill claims that he will receive half the votes for the House of Commons seat for the
constituency of Dundee.2 If we do not believe Churchill’s claim and are doubtful of his popularity, we
would seek to test an alternative hypothesis. How should we write down our research hypotheses?

If we let 𝑝 be the fraction of the population voting for Churchill, then we have the null hypothesis,

𝐻0 ∶ 𝑝 = 0.5 ,

and the alternative hypothesis (we believe Churchill is less popular than he claims),

𝐻𝑎 ∶ 𝑝 < 0.5 .

Support for the alternative hypothesis is obtained by showing a lack of support for its converse hypothesis
(the null hypothesis).

Example 2.4. Suppose that 𝑚 = 15 voters are selected from Dundee and 𝑋, the number favouring
Churchill, is recorded. Based on observing 𝑋, we construct a rejection region 𝑅 = {𝑥 ∶ 𝑥 ≤ 𝑘}. If
𝑘 is small compared to 𝑚, then the rejection region would provide strong evidence to reject 𝐻0. How
should one choose the rejection region?

Assume now that 𝑚 = 15 voters are polled and that we select 𝑘 = 2 to have a rejection region 𝑅 = {𝑥 ≤ 2}.
For this choice of 𝑘, the rejection region 𝑅 provides strong support to reject 𝐻0. Assuming the null

2Sir Winston Churchill was Member of Parliament for Dundee from 1908–1922 [https://www.wikiwand.com/en/Winston_Ch
urchill].
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hypothesis is true, we expect approximately half of the 15 voters (ca. 7) to vote for Churchill. Observing
𝑥 = 0, 𝑥 = 1 or 𝑥 = 2 (the values that would place us in the rejection region) would provide strong
evidence against 𝐻0.

We can calculate the probability of a type I error. From the definition of type I error,

𝛼 = 𝑃 (type I error)
= 𝑃 (rejecting 𝐻0 when 𝐻0 is true)
= 𝑃 (𝑋 ∈ 𝑅 when 𝐻0 is true)
= 𝑃 (𝑋 ≤ 2 when 𝑝 = 0.5) .

Since 𝑋 ∼ Binom(15, 0.50), we calculate that 𝛼 = 0.00369. Thus, for this particular choice of rejection
region 𝑅, the risk of concluding that Churchill will lose if, in fact, he is the winner is tiny.

For this rejection region, how good is the test at protecting us from type II errors, i.e., concluding that
Churchill is the winner if, in fact, he will lose? Suppose that Churchill receives 25 of the votes (𝑝 = 0.25).
The probability of type II error 𝛽 is,

𝛽 = 𝑃 (type II error)
= 𝑃 (fail to reject 𝐻0 when 𝐻0 false)
= 𝑃 (𝑋 ∉ 𝑅 when 𝐻0 false)
= 𝑃 (𝑋 > 2 when 𝑝 = 0.3) .

For 𝑋 ∼ Binom(15, 0.25), we calculate 𝛽 = 0.764. If we use 𝑅 = {𝑥 ≤ 2}, then our test will lead us to
conclude that Churchill is the winner with a probability of 0.764 even if 𝑝 is as low as 0.25!

If we repeat these calculations for 𝑅∗ = {𝑥 ≤ 5}, we find 𝛼 = 0.151 versus 𝛽 = 0.148, even if 𝑝 is as low
as 0.25, which is a much better balance between type I and type II errors.

What if the sample size is close to the population size?

In Example 2.4, 𝑋 is a binomial random variable because it can be modelled as 𝑚 independent
Bernoulli trails each with probability 𝑝 of success (i.e., votes for Churchill) as long as the sample
size 𝑚 is much smaller than the population of Dundee. If we had the means to canvas nearly the
whole population, what goes wrong conceptually?

Elements of a statistical test

A statistical test is based on a null hypothesis (𝐻0) and an alternative hypothesis (𝐻𝑎).
An appropriate test statistic 𝑇 is computed. Then either:

• 𝑇 is compared to a rejection region (based on significance level 𝛼)

OR

• 𝑃 -value (based on 𝑇 ) is compare to the significance level 𝛼.
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Figure 2.4: Ballot listing Churchill from the collection of the McManus, Dundee. When you take a break
from studying, go and see if you can find it! For more information on visiting the McManus
visit https://www.mcmanus.co.uk/.
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3 Single sample inferences

In a few situations, we can derive the sampling distribution for the statistic of interest and use this as the
basis for constructing confidence intervals and hypothesis tests. Presently we estimate population means
𝜇 in Section 3.1, population proportions 𝑝 in Section 3.2, and population variances 𝜎2 in Section 3.3 in
some special cases.

3.1 Estimating means

If the parameter of interest is the population mean 𝜃 = 𝜇, then what can be said about the distribution of
the sample mean estimator ̂𝜃 = 𝑋 in Equation 2.1? We will consider three cases,

1. normal population with known 𝜎2,
2. any population with unknown 𝜎2, when the sample size 𝑚 is large, and
3. normal population with unknown 𝜎2, when the sample size 𝑚 is small.

In each, the form of the confidence interval and hypothesis test statistic for 𝜇 can be derived using the
approximate normality of the sample mean.

In general, the confidence intervals for the mean based on normality theory will have the form:

point estimate 𝜇 ± (critical value) ⋅ (precision of point estimate) , (3.1)

where the reference distribution will be the standard normal (for 1. and 2.) and the Student’s t distribution
(for 3.). The critical value corresponds to the value under the reference distribution that yields the two-
sided (symmetric) tail areas summing to 1 − 𝛼.

3.1.1 Mean of a normal population with known variance

When sampling from a normal population with a known mean and variance, the estimator for the sample
mean is also normal with mean 𝜇 and variance 𝜎2/𝑚 where 𝑚 is the sample size. Standardising,

𝑋 − 𝜇
𝜎/√𝑚

∼ N(0, 1) (3.2)

we see that
𝑃

(
−𝑧𝛼/2 < 𝑋 − 𝜇

𝜎/√𝑚
< 𝑧𝛼/2)

= 1 − 𝛼 .

Based on knowing the estimator’s sampling distribution, we state the following CI.
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Definition 3.1 (Confidence interval for mean of normal population). A 100(1 − 𝛼)% confidence interval
for the mean 𝜇 of a normal population when the value of 𝜎2 is known is given by

(
𝑥 − 𝑧𝛼/2 ⋅ 𝜎

√𝑚
, 𝑥 + 𝑧𝛼/2 ⋅ 𝜎

√𝑚)
, (3.3)

or 𝑥 ± 𝑧𝛼/2 ⋅ 𝜎/√𝑚, where 𝑚 is the sample size.

The CI for the mean Equation 3.3 can be expressed (cf. Equation 3.1) as

point estimate 𝜇 ± (𝑧 critical value) ⋅ (standard error of mean) .

The 𝑧 critical value is related to the tail areas under the standard normal curve; we need to find the 𝑧-
score having a cumulative probability equal to 1−𝛼 according to Definition@ref(def:confidence-interval-
gen).

Example 3.1. Consider 400 samples from a normal population with a known standard deviation 𝜎 =
17000 with mean 𝑥 = 20992 as depicted in Figure 3.1. How do we construct a 95% confidence interval
for 𝜇?

0e+00

1e−05

2e−05

3e−05

−25000 0 25000 50000 75000
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D
en
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ty

Sample mean

Figure 3.1: 400 samples from a normal population with known variance 𝜎 = 17000 together with the
corresponding (normal) sampling distribution for the observed mean.

For 𝛼 = 0.05, the critical value 𝑧0.025 = 1.96; this value can be found by looking in a table of critical 𝑧
values or using the R code qnorm(1-.05/2). From Definition 3.1,

(
𝑥 − 𝑧𝛼/2

𝜎
√𝑚

, 𝑥 + 𝑧𝛼/2
𝜎

√𝑚)
=

(
20992 − 1.9617000

√400
, 20992 + 1.9617000

√400 )
= (19326 , 22658) .

The data above was generated with a true population parameter 𝜇 = 21500, and the CI contains the
parameter value (incidentally).
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As noted in Equation 3.1 and Equation 3.3, the width of a CI is related to the estimator’s precision. The
confidence level (or reliability) is inversely related to this precision. When the population is normal and
the variance is known, determining the sample size necessary to achieve a desired confidence level and
precision is an appealing strategy. A general formula for the sample size 𝑚∗ necessary to achieve an
interval width 𝑤 is obtained at confidence level 𝛼 by equating

𝑤 = 2𝑧𝛼/2 ⋅ 𝜎/√𝑚∗

and then solving for 𝑚∗.

Proposition 3.1. The sample size 𝑚 required to achieve a CI for 𝜇 with width 𝑤 at level 𝛼 is given by,

𝑚∗ = (2𝑧𝛼/2 ⋅ 𝜎
𝑤)

2
.

From Proposition 3.1, we see that the smaller the desired 𝑤, the larger 𝑚∗ must be (and subsequently, the
more effort that must be allocated to data collection).

Example 3.2. In Example 3.1 we identified a 95% confidence interval for a normal population with
known variance. The range (width) of that interval was 22658 − 19326 = 3332. How much would 𝑚 need
to increase to halve the interval width?

Using Proposition 3.1,
𝑚 = (2 ⋅ 1.96 ⋅ 17000

1666 )
2

= (40)2 = 1600 .

Thus, we find that for the same level 𝛼 = 0.05, we would need to quadruple our original sample size to
halve the interval.

You heard it here first…

As Example 3.2 shows, it is expensive to reduce uncertainty!

Suppose now that we would like to consider a hypothesis test for the population mean, such as 𝐻0 ∶ 𝜇 =
𝜇0. Starting from Equation 3.2 and assuming that the null hypothesis is true, we find

𝑍 = 𝑋 − 𝜇0

𝜎/√𝑚
.

The statistic 𝑍 measures the distance (measured in units of sd[𝑋]) between 𝑋 and its expected value
under the null hypothesis. We will use the statistic 𝑍 to determine if there is substantial evidence against
𝐻0, i.e. if the distance is too far in a direction consistent with 𝐻𝑎.

Proposition 3.2. Assume that we sample 𝑋1, … , 𝑋𝑚 from a normal population with mean 𝜇 and known
variance 𝜎2.

Consider 𝐻0 ∶ 𝜇 = 𝜇0. The test statistic is

𝑍 = 𝑋 − 𝜇0

𝜎/√𝑚
. (3.4)

For a hypothesis test at level 𝛼, we use the following procedure:
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If 𝐻𝑎 ∶ 𝜇 > 𝜇0, then 𝑃 = 1 − Φ(𝑧), i.e., upper-tail 𝑅 = {𝑧 > 𝑧𝛼}.

If 𝐻𝑎 ∶ 𝜇 < 𝜇0, then 𝑃 = Φ(𝑧), i.e., lower-tail 𝑅 = {𝑧 < −𝑧𝛼}.

If 𝐻𝑎 ∶ 𝜇 ≠ 𝜇0, then 𝑃 = 2(1 − Φ(|𝑧|)), i.e., two-tailed 𝑅 = {|𝑧| > 𝑧𝛼/2}.

We recall that Φ(𝑧) is the area in the lower tail of the standard normal density, i.e., to the left of the
calculated value of 𝑧. Thus 1 − Φ(𝑧) is the area in the upper-tail, and 2(1 − Φ(|𝑧|)) is twice the area
captured in the upper-tail by |𝑧|, i.e. the sum of the area in the tails corresponding to ±𝑧. If 𝑃 < 𝛼, then
we reject 𝐻0 at level 𝛼 as the data provides sufficient evidence at the 𝛼 level against the null hypothesis.

Example 3.3. Let’s return to the data in Example 3.1, where we sample from a normal population with
a known standard deviation 𝜎 = 17000. Suppose that someone claims the true mean is 𝜇0 = 20000. Does
our sample mean 𝑥 = 20992 based on 𝑚 = 400 samples provide evidence to contradict this claim at the
𝛼 = 0.05 level?

The first thing to record is our parameter of interest: 𝜇, the true population mean. The null hypothesis,
which we assume to be true, is a statement about the value of 𝜇,

𝐻0 ∶ 𝜇 = 20000 ,

and the alternative hypothesis is
𝐻𝑎 ∶ 𝜇 ≠ 20000 ,

since we are concerned with a deviation in either direction from 𝜇0 = 20000.

Since the population is normal with known variance, we compute the test statistic:

𝑧 = 𝑥 − 𝜇0

𝜎/√𝑚
= 20992 − 20000

17000/√400
= 1.167 .

That is, the observed sample mean 𝑥 is slightly more than 1 standard deviation than what we expect
under 𝐻0. Consulting Proposition 3.2, we see that a two-tailed test is indicated for this particular 𝐻𝑎 (i.e.,
containing “≠”). The 𝑃 -value is the area,

𝑃 = 2(1 − Φ(1.167)) = 2(0.1216052) = 0.2432.

Thus, since 𝑃 = 0.2432 > 0.05 = 𝛼, we fail to reject 𝐻0 at the level 0.05. The data does not support the
claim that the true population mean differs from the value 20000 at the 0.05 level.

Recall

Note Φ(𝑧) = 𝑃 (𝑍 ≤ 𝑧) is found by calling pnorm(z) in R or by looking up the value in a 𝑍 table.

3.1.2 Mean of a population with unknown variance (large-sample)

Consider samples 𝑋1, … , 𝑋𝑚 from a population with mean 𝜇 and variance 𝜎2. Provided that 𝑚 is large
enough, the Central Limit Theorem implies that the estimator for the sample mean 𝑋 in Equation 2.1 has
approximately a normal distribution. Then

𝑃
(

−𝑧𝛼/2 < 𝑋 − 𝜇
𝜎/√𝑚

< 𝑧𝛼/2)
≈ 1 − 𝛼 ,
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since the transformed variable has approximately a standard normal distribution. Thus, computing a
point estimate based on a large 𝑚 of samples yields a CI for the population parameter 𝜇 at an approximate
confidence level 𝛼. However, it is often the case that the variance is unknown. When 𝑚 is large, replacing
the population variance 𝜎2 by the sample variance 𝑆2 in Equation 2.2 will not typically introduce too
much additional variability.

Proposition 3.3. For a large sample size 𝑚, an approximate 100(1−𝛼)% confidence interval for the mean
𝜇 of any population when the variance is unknown is given by

(
𝑥 − 𝑧𝛼/2 ⋅ 𝑠

√𝑚
, 𝑥 + 𝑧𝛼/2 ⋅ 𝑠

√𝑚)
, (3.5)

or 𝑥 ± 𝑧𝛼/2 ⋅ 𝑠/√𝑚.

The CI for the mean Equation 3.5 applies regardless of the shape of the population distribution so long as
the number of samples is large. A rule of thumb is that 𝑚 > 40 is sufficient. In words, the CI Equation 3.5
can be expressed (cf. Equation 3.1) as

point estimate 𝜇 ± (𝑧 critical value) ⋅ (estimated standard error of mean) .

Typically, a large-sample CI for a general parameter 𝜃 holds that is similar to Equation 3.5 for any esti-
mator ̂𝜃 that satisfies: (1) approximately normal in distribution, (2) approximately unbiased, and (3) an
expression for the standard error is available.

To conduct a large-sample hypothesis test regarding the populationmean 𝜇, we consider the test statistic

𝑍 = 𝑋 − 𝜇0

𝑆/√𝑚

under the null hypothesis, i.e., we replace the population standard deviation 𝜎 with the sample standard
deviation 𝑆. When the number of samples 𝑚 is large (say 𝑚 > 40), then 𝑍 will be approximately normal.
Substituting this test statistic 𝑍 for Equation 3.4, we follow Proposition 3.2 to determine how to calculate
the 𝑃 -value.

Rule of thumb

For estimating means, we consider a sample size of 𝑚 > 40 to be large.
However, ‘large’ depends on the context: for example, the level of support for the evidence that you
are seeking. For 𝑚 > 20, the interval estimate

point estimate ± 2 sd

has 95% coverage and is surprisingly robust, i.e. applies to a wide variety of population distributions
including the normal. However, this rule of thumbwon’t apply if youwant to consider some different
level, say 80% (Belle 2008, sec. 1).

Example 3.4. Let’s consider the Iris Data from Note 1 and use the infer package to make inferences.
In particular, consider whether there is evidence at the 0.05 level to support the statement that the true
mean petal length of Iris flowers exceeds 3.5 cm.

44



Recall that the Iris Data contains 𝑚 = 150 measurements of petal length across three species of Iris
flowers and that the true variance is unknown. We are interested in testing the null hypothesis,

𝐻0 ∶ 𝜇 ≤ 3.5 ,

against the alternative,
𝐻𝑎 ∶ 𝜇 > 3.5 ,

i.e., a one-sided test.

We first compute the observed statistic (sample mean) 𝜇. We use the infer package to construct a null
distribution computationally for the response variable (petal length). We specify that the hypothesis test
is for the parameter based on a point estimate and that we are testing for equality with the value 𝜇0 = 3.5.
The null distribution is generated by computing 1000 bootstrap replications of the sample mean, i.e., the
samplemean is generated 1000 times by drawing 150 values at randomwith replacement from the original
corpus of 𝑚 = 150 samples. (Note that we obtain the null distribution computationally, so we do not need
to standardise to 𝑍.)

mu_hat <- mean(iris$Petal.Length)

null_dist <- iris |>
specify(response = Petal.Length) |>
hypothesise(null = "point", mu = 3.5) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "mean")

null_dist |>
visualise() +
shade_p_value(obs_stat = mu_hat, direction = "greater")
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Simulation−Based Null Distribution

The bootstrapped null distribution is plotted using the visualise command, and the regions of the null
distribution that are as extreme (or more extreme) than the observed statistic 𝜇 can be highlighted using
the shade_p_value command.
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p_val <- null_dist |>
get_p_value(obs_stat = mu_hat, direction = "greater")

p_val

# A tibble: 1 x 1
p_value

<dbl>
1 0.042

The test yields a 𝑃 -value of 𝑃 = 0.042. This values is quite small; if 𝜇 ≤ 3.5, then the probability of
obtaining the sample mean value 𝜇 = 3.758 is only 0.042! Thus, the data provide sufficient evidence at
the 0.05 level against the hypothesis that the true mean petal length is at most 3.5 cm.

3.1.3 Mean of a normal population with unknown variance

In Section 3.1.1, we considered samples 𝑋1, … , 𝑋𝑚 from a normal population with a known 𝜇 and 𝜎2. In
contrast, here, we consider samples from a normal population and assume the population parameters 𝜇
and 𝜎2 are unknown. If the number of samples is large, the discussion in Section 3.1.2 indicates that the
rv

𝑍 = (𝑋 − 𝜇)√𝑚/𝑆

has approximately a standard normal distribution. However, if 𝑚 is not sufficiently large then the trans-
formed variable will be more spread out than a standard normal distribution.

Theorem 3.1. For the sample mean 𝑋 based on 𝑚 samples from a normal distribution with mean 𝜇, the
rv

𝑇 = 𝑋 − 𝜇
𝑆/√𝑚

∼ t(𝑚 − 1) , (3.6)

that is, 𝑇 has Student’s t distribution with 𝜈 = 𝑚 − 1 df.

This leads us to consider a CI for the population parameter 𝜇 based on critical values of the t distribution.

Proposition 3.4. A 100(1 − 𝛼)% confidence interval for the mean 𝜇 of a normal population, when 𝜎2 is
unknown, is given by

(
𝑥 − 𝑡𝛼/2,𝑚−1 ⋅ 𝑠

√𝑚
, 𝑥 + 𝑡𝛼/2,𝑚−1 ⋅ 𝑠

√𝑚)
, (3.7)

or 𝑥 ± 𝑡𝛼/2,𝑚−1 ⋅ 𝑠/√𝑚. Here 𝑥 and 𝑠 are the sample mean and sample standard deviation, respectively.

Example 3.5. Let us return to the height of 31 felled black cherry trees from the Cherry Tree Data in
Note 2. Give a 99% CI for the population mean 𝜇.

For 𝑚 = 31, the critical value of the reference distribution is

𝑡0.005,30 ≈ 2.7499 ,
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which can looked up in a table of critical values for t(𝜈 = 30) or found using the R command qt(1-0.01/2,
df = 31-1). The sample mean 𝑥 = 76 (computed in Example 2.1) is combined with the sample standard
deviation,

𝑠 =
√√√
⎷

1
𝑚 − 1

𝑚

∑
𝑖=1

(𝑥𝑖 − 𝑥)2

= √
1
30 ((63 − 76)2 + ⋯ + (87 − 76)2)

= 6.372 ,
to form the interval estimate

(
𝑥 − 𝑡𝛼/2,𝑚−1 ⋅ 𝑠

√𝑚
, 𝑥 + 𝑡𝛼/2,𝑚−1 ⋅ 𝑠

√𝑚)

=
(

76 − 2.750 ⋅ 6.372
√31

, 76 + 2.750 ⋅ 6.372
√31 )

= (72.85 , 79.15) .

For comparison, the critical value 𝑡.01/2,𝜈 for 𝜈 = 14, … , 40 can be recalled with the following command.

qt(1-0.01/2, df = seq(14,40))

[1] 2.976843 2.946713 2.920782 2.898231 2.878440 2.860935 2.845340 2.831360 2.818756
[10] 2.807336 2.796940 2.787436 2.778715 2.770683 2.763262 2.756386 2.749996 2.744042
[19] 2.738481 2.733277 2.728394 2.723806 2.719485 2.715409 2.711558 2.707913 2.704459

Note that these critical values can deviate significantly from the corresponding 𝑧0.01/2 = 2.575829. In par-
ticular, if we had erroneously used the large sample estimate Equation 3.5, then we would have obtained
a 99% CI (73.05 , 78.95) which might give us a false sense of security as it is narrower.

In contrast to Proposition 3.1, it is difficult to select the sample size 𝑚 to control the width of the t-based
CI as the width involves the unknown (before the sample is acquired) 𝑠 and because 𝑚 also enters through
𝑡𝛼/2,𝑚−1. A one-sample t test based on Equation 3.6 can be used to test a hypothesis about the population
mean when the population is normal and 𝜎2 is unknown.

Proposition 3.5. Assume that we sample 𝑋1, … , 𝑋𝑚 from a normal population with mean 𝜇 and unknown
variance 𝜎2.

Consider 𝐻0 ∶ 𝜇 = 𝜇0. The test statistic is

𝑇 = 𝑋 − 𝜇0

𝑆/√𝑚
.

For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝜇 > 𝜇0, then 𝑃 -value is the area under t(𝑚 − 1) to the right of 𝑡.

If 𝐻𝑎 ∶ 𝜇 < 𝜇0, then 𝑃 -value is the area under t(𝑚 − 1) to the left of 𝑡.

If 𝐻𝑎 ∶ 𝜇 ≠ 𝜇0, then 𝑃 -value is twice the area under t(𝑚 − 1) to the right of |𝑡|.
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Table 3.1: Observations of 𝑚 = 31 felled black cherry trees.

Volume [cu ft]
10.2, 10.3, 10.3, 15.6, 16.4, 18.2, 18.8, 19.1, 19.7, 19.9, 21.0, 21.3, 21.4, 22.2, 22.6, 24.2, 24.9,
25.7, 27.4, 31.7, 33.8, 34.5, 36.3, 38.3, 42.6, 51.0, 51.5, 55.4, 55.7, 58.3, 77.0

Example 3.6. Let’s consider the Cherry Tree Data in Note 2. The average timber volume is given
in Table 3.1. The distribution for this data is approximately normal. We might ask if the data provide
compelling evidence, say at level 0.05, for concluding that the true average timber volume exceeds 21.3
cubic feet.1

Let’s carry out a significance test for the true average volume of timber 𝜇 at level 𝛼 = 0.05. We assume
the null hypothesis

𝐻0 ∶ 𝜇 = 21.3 .

An appropriate alternative hypothesis is

𝐻𝑎 ∶ 𝜇 > 21.3 ,

that is, we will adopt the stance that the true average exceeds 𝜇0 = 21.3 only if the null is rejected.

From our 𝑚 = 31 samples, we find that 𝑥 = 30.17 and that 𝑠 = 16.44. The computed value of the one-
sample t-statistic is given by

𝑡 = 𝑥 − 𝜇0

𝑠/√𝑚

= 30.17 − 21.3
16.44/√31

= 3 .
The test is based on 𝜈 = 31 − 1 df, and 𝑃 = 0.002663. This is the upper-tail area, i.e., the area to the right
of 𝑡 in Figure 3.2. Since 𝑃 ≪ 𝛼, we reject the null hypothesis that the population mean is 21.3. The data
provide sufficient evidence that the population mean differs from 21.3.

Shapiro-Wilk normality test

We can assess the normality of the sample by examining the normal quantile-quantile plot as in
Example 2.1. For the data in Example 3.6 recall that this is done using the following R code.

trees |> ggplot(aes(sample = Volume)) + stat_qq() + stat_qq_line()

1How much wood is that? About a sixth of a cord. A full cord of chopped firewood in the US is 124 cu ft; about enough to
keep you warm through a New England winter (according to my mother-in-law).
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Figure 3.2: For this test, the reference distribution is t(𝜈 = 30) (not a Normal distribution) and the 𝑃 -value
is the upper-tail area, i.e., to the right of the computed statistic 𝑡.
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Figure 3.3: Normal quantile-quantile plot for the Volume variable (feature) in the Cherry Tree Data.

The data deviates quite a bit in the centre and in the tails of the distribution, indicating that there
might be a moderate departure from normality.
It is also possible to test the null hypothesis that the data is consistent with a normal distribution
versus the alternative that the data is not normal. This is called a Shapiro-Wilk normality test.

shapiro.test(trees$Height)

Shapiro-Wilk normality test

data: trees$Height
W = 0.96545, p-value = 0.4034
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At level 0.05, the Shapiro-Wilk test yields a 𝑃 -value 𝑃 = 0.4034 > 0.05, and therefore we fail
to reject the null hypothesis. We cannot exclude that the data is drawn from a normal population.
This “prove” the data is drawn from a normal distribution, but it does tell us that for this particular
example, an inference based on a normal distribution instead of a t distribution will probably be
reasonable. It is always good to view the QQ plot as well — sometimes if the number of samples
is very large then the Shapiro-Wilk test will reject the null for trivial deviations from normality.

3.2 Estimating proportions

Consider a population of size 𝑀 in which each member either satisfies a given property or does not
(i.e. a binary classification). The proportion 𝑝 ∈ (0, 1) of the population satisfying the given property is
a parameter characterising the population we might be interested in estimating. A sample of classified
observations, 𝑋1, … , 𝑋𝑚 ∼ Bernoulli(𝑝) , from the population contains a proportion,

̂𝑝 = 1
𝑚

𝑚

∑
𝑖=1

𝑋𝑖 , (3.8)

satisfying the given property. The estimator ̂𝑝 varies with the sample, and for large 𝑚, its sampling
distribution has the following properties:

𝜇 ̂𝑝 = E[𝑋𝑖] = 𝑝 (3.9)

and
𝜎2

̂𝑝 = Var[𝑋𝑖]
𝑚 = 𝑝(1 − 𝑝)

𝑚 , (3.10)

provided that 𝑚 is small relative to 𝑀. Moreover, by invoking the Central Limit Theorem, we have the
distribution of ̂𝑝 is approximately normal for sufficiently large 𝑚 as Equation 3.8 is a sample mean. Indeed,
this normal approximation works well for moderately large 𝑚 as long as 𝑝 is not too close to zero or one;
a rule of thumb is that 𝑚𝑝 > 5 and 𝑚(1 − 𝑝) > 5.

Rule of thumb

For estimating proportions, a rule of thumb is 𝑚 ≤ 0.05𝑀.
Note that if 𝑚 is large relative to 𝑀 (𝑚 > 0.05𝑀) then the variance Equation 3.10 must be adjusted
by a factor (related to the hypergeometric distribution):

𝜎2
̂𝑝 = 𝑝(1 − 𝑝)

𝑚
𝑀 − 𝑚
𝑀 − 1 ,

where for fixed 𝑚 the factor converges to 1 as 𝑀 → ∞.

Proposition 3.6. For large samples 𝑛, a 100(1 − 𝛼)% confidence interval for the parameter 𝑝 is given by

̂𝑝 ± 𝑧𝛼/2√
̂𝑝(1 − ̂𝑝)

𝑚 . (3.11)

This follows from Proposition 3.3 by observing that Equation 3.8 is a sample mean and replacing the
standard error 𝜎 ̂𝑝 from Equation 3.10 by the estimated standard error,

ŝe( ̂𝑝) = √
̂𝑝(1 − ̂𝑝)

𝑚 ;
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recall the 𝑠 in Equation 3.5) is the sample variance for the population and 𝑠/√𝑚 = se is the standard error
of the point estimator.

Proposition 3.7. Let 𝑋 be the count of members with a given property based on a sample of size 𝑚 from
a population where a proportion 𝑝 shares the property. Then ̂𝑝 = 𝑋/𝑚 is an estimator of 𝑝. Assume
𝑚𝑝0 ≥ 10 and 𝑚(1 − 𝑝0) ≥ 10.

Consider 𝐻0 ∶ 𝑝 = 𝑝0. The test statistic is

𝑍 = ̂𝑝 − 𝑝0

√𝑝0(1 − 𝑝0)/𝑚
.

For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝑝 > 𝑝0, then 𝑃 -value is the area under N(0, 1) to the right of 𝑧.

If 𝐻𝑎 ∶ 𝑝 < 𝑝0, then 𝑃 -value is the area under N(0, 1) to the left of 𝑧.

If 𝐻𝑎 ∶ 𝑝 ≠ 𝑝0, then 𝑃 -value is twice the area under N(0, 1) to the right of |𝑧|.

Example 3.7. Let us revisit Example 2.3, where we considered Churchill’s claim that he would receive
half the votes for the House of Commons seat for the constituency of Dundee. We are sceptical that he
is as popular as he says. Suppose 116 out of 263 Dundonians polled claimed they intended to vote for
Churchill. Can it be concluded at a significance level of 0.10 that more than half of all eligible Dundonains
will vote for Churchill?

The parameter of interest is 𝑝, the proportion of votes for Churchill. The null hypothesis is

𝐻0 ∶ 𝑝 = 0.5 ,

and the alternative hypothesis is,
𝐻𝑎 ∶ 𝑝 < 0.5 .

The test is oneside (i.e. 𝐻𝑎 ∶ 𝑝 < 0.5) since we are interested in testing support for “more than half”.
Since 263(0.5) = 131.5 > 10, we satisfy the assumptions stated in Proposition 3.7.

Based on the sample, ̂𝑝 = 116/263 = 0.4411. The test statistic value is

𝑧 = ̂𝑝 − 𝑝0

√𝑝0(1 − 𝑝0)/𝑚

= 0.4411 − 0.5
√0.5(1 − 0.5)/263

= −1.91 .

The 𝑃 -value for this lower-tailed 𝑧 test is 𝑃 = Φ(−1.91) = 0.028. Since 𝑃 < 0.10 = 𝛼, we reject the null
hypothesis at the 0.1 level. The evidence for concluding that the true proportion is different from 𝑝0 = 0.5
at the 0.10 level is compelling.2

2Churchill took ca. 44% of the vote in the 1908 by-election to become MP for Dundee [https://www.wikiwand.com/en/1908
_Dundee_by-election].
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3.3 Estimating variances

Next, we consider estimates of the population variance (and standard deviation) when the population is
assumed to have a normal distribution. In this case, the sample variance 𝑆2 in Equation 2.2 provides
the basis for inferences. Consider iid samples 𝑋1, … , 𝑋𝑚 ∼ N(𝜇, 𝜎2). We provide the following theorem
without proof.

Theorem 3.2. For the sample variance 𝑆2 based on 𝑚 samples from a normal distribution with variance
𝜎2, the rv

𝑉 = (𝑚 − 1)𝑆2

𝜎2 =
∑𝑖(𝑋𝑖 − 𝑋)2

𝜎2 ∼ 𝜒2
𝑚−1 ,

that is, 𝑉 has a 𝜒2 distribution with 𝜈 = 𝑚 − 1 df.

Based on Theorem 3.2,

𝑃 (𝜒2
1−𝛼/2,𝑚−1 < (𝑚 − 1)𝑆2

𝜎2 < 𝜒2
𝛼/2,𝑚−1) = 1 − 𝛼 ,

i.e., the area captured between the right and left tail critical 𝜒2 values is 1 − 𝛼. The expression above can
be further manipulated to obtain an interval for the unknown parameter 𝜎2:

𝑃
(

(𝑚 − 1)𝑠2

𝜒2
𝛼/2,𝑚−1

< 𝜎2 < (𝑚 − 1)𝑠2

𝜒2
1−𝛼/2,𝑚−1 )

= 1 − 𝛼 ,

where we substitute the computed value of the point estimate 𝑠2 for the estimator into the limits to give
a CI for 𝜎2. If we take square roots in the inequality above, we obtain a CI for the population standard
deviation 𝜎.

Proposition 3.8. A 100(1 − 𝛼)% confidence interval for the variance of a normal population is

((𝑚 − 1)𝑠2/𝜒2
𝛼/2,𝑚−1 , (𝑚 − 1)𝑠2/𝜒2

1−𝛼/2,𝑚−1) . (3.12)

A 100(1 − 𝛼)% confidence interval for the standard deviation 𝜎 of a normal population is given by taking
the square roots of the lower and upper limits in Equation 3.12.

Example 3.8. For the Cherry Tree Data in Table 3.1 concerning the timber volume of 31 felled black
cherry trees, give a 95 CI for the variance.

We are interested in estimating the true variance 𝜎2 of the timber volume based on 𝑚 = 31 samples. Recall
that the mean of our data is 𝑥 = 30.17 cu ft and that the sample variance is 𝑠2 = 270.2 using the estimator
Equation 2.2. The critical values for the 𝜒2

.975,30 = 16.7908 and 𝜒2.025, 30 = 46.9792 can be found by
checking a table of critical values of the 𝜒2(𝜈 = 30) distribution or by using the R code qchisq(1-0.05/2,
df=30, lower.tail = FALSE) and qchisq(0.05/2, df=df, lower.tail = FALSE), respectively, see
Figure 3.4 below.

Pulling everything together, a 95% CI for the population variance is given by

((𝑚 − 1)𝑠2/𝜒2
𝛼/2,𝑚−1 , (𝑚 − 1)𝑠2/𝜒2

1−𝛼/2,𝑚−1)
= ((30)270.2/46.9792 , (30)270.2/16.7908)
= (172.5 , 482.8) .

Note the position of the critical values—don’t swap them around.
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Each shaded area = α

χ1−α, ν
2 χα, ν

2

Figure 3.4: As the 𝜒2 distribution is not symmetric, the upper and lower critical values will not be the
same (the shaded areas are equal).

Example 3.9. Let’s Revisit Example 3.8) and use the infer package to construct a 95% confidence in-
terval for the true standard deviation of the timber volume of black cherry trees based on the available
measurements in the Cherry Tree Data, Table 3.1).

s <- sd(trees$Volume)

null_dist <- trees |>
specify(response = Volume) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "sd")

ci <- null_dist |>
get_confidence_interval(point_estimate = s, level = 0.95, type = "se")

null_dist |>
visualise() + shade_ci(ci)
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Weplot the 95% confidence interval for the standard deviation based on the computational null distribution
obtained using 1000 bootstrap replications; note the interval estimate is in good agreement with the values
obtained in Example 3.8.

ci^2

lower_ci upper_ci
1 142.2009 438.9398

Due to the computational nature, the bootstrapped interval estimate is not precisely the same as the theo-
retical interval estimate and rerunning the code will yield a slightly different interval.
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4 Two samples inferences

We consider inferences—estimators, confidence intervals, and hypothesis testing—for comparing means,
proportions, and variances based on two independent samples from different populations, respectively, in
Section 4.1, Section 4.3, Section 4.4. We also consider inferences when the samples are not independent,
so-called paired samples, in Section 4.2.

4.1 Comparing means

Let us assume that we have two normal populations with iid samples

𝑋1, … , 𝑋𝑚 ∼ N(𝜇𝑋 , 𝜎2
𝑋)

and
𝑌1, … , 𝑌𝑛 ∼ N(𝜇𝑌 , 𝜎2

𝑌 )
and, moreover, that the 𝑋 and 𝑌 samples are independent of one another. When comparing the means of
two populations, the quantity of interest is the difference: 𝜇𝑋 − 𝜇𝑌 .

Proposition 4.1. If we consider the sample means 𝑋 and 𝑌 , then the mean of the variable 𝑋 − 𝑌 is,

𝜇𝑋−𝑌 = E [𝑋 − 𝑌 ] = 𝜇𝑋 − 𝜇𝑌 ,

and the variance is,

𝜎2
𝑋−𝑌

= Var [𝑋 − 𝑌 ] =
𝜎2

𝑋
𝑚 +

𝜎2
𝑌
𝑛 .

Proposition 4.1 follows directly from the definition of the sample mean in Equation 2.1 and properties of
expectation and variance. If our parameter of interest is

𝜃 = 𝜇1 − 𝜇2 ,

then its estimator,
̂𝜃 = 𝑋 − 𝑌 ,

is normally distributed with mean and variance given by Proposition 4.1. If the sample sizes 𝑚 and 𝑛 are
large, then the estimator is approximately normally distributed by the Central Limit Theorem regardless
of the population. We now discuss CIs and hypothesis tests for comparing population means 𝜃 = 𝜇𝑋 −𝜇𝑌 .
We consider three cases when comparing means:

1. normal populations when the variances 𝜎2
𝑋 and 𝜎2

𝑌 are known,
2. any populations with unknown variances 𝜎2

𝑋 and 𝜎2
𝑌 , when the sample sizes 𝑚 and 𝑛 are large,

3. normal populations when the variances 𝜎2
𝑋 and 𝜎2

𝑌 are unknown, when the sample sizes 𝑚 and 𝑛
are small,

noting that the development primarily reflects that of Section 3.1.
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4.1.1 Comparing means of normal populations when variances are known

When 𝜎2
𝑋 and 𝜎2

𝑌 are known, standardizing 𝑋 − 𝑌 yields the standard normal variable:

𝑍 = 𝑋 − 𝑌 − (𝜇𝑋 − 𝜇𝑌 )

√
𝜎2

𝑋
𝑚 + 𝜎2

𝑌
𝑛

∼ N(0, 1) . (4.1)

Inferences proceed by treating the parameter of interest 𝜃 as in the single sample case using the test statistic
Equation 4.1.

Proposition 4.2. A 100(1 − 𝛼)% CI for the parameter 𝜃 = 𝜇𝑋 − 𝜇𝑌 based on samples of size 𝑚 from a
normal population N(𝜇𝑋 , 𝜎2

𝑋) and of size 𝑛 from N(𝜇𝑌 , 𝜎2
𝑌 ) with known variances, is given by

(𝑥 − 𝑦) ± 𝑧𝛼/2 ⋅ √
𝜎2

𝑋
𝑚 +

𝜎2
𝑌
𝑛 .

Proposition 4.3. Assume that we sample iid 𝑋1, … , 𝑋𝑚 ∼ N(𝜇𝑋 , 𝜎2
𝑋) and iid 𝑌1, … , 𝑌𝑛 ∼ N(𝜇𝑌 , 𝜎2

𝑌 ) and
that the 𝑋 and 𝑌 samples are independent.

Consider 𝐻0 ∶ 𝜇𝑋 − 𝜇𝑌 = 𝜃0. The test statistic is

𝑍 = 𝑋 − 𝑌 − 𝜃0

√
𝜎2

𝑋
𝑚 + 𝜎2

𝑌
𝑛

. (4.2)

For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝜇𝑋 − 𝜇𝑌 > 𝜃0, then 𝑃 = 1 − Φ(𝑧), i.e., upper-tail 𝑅 = {𝑧 > 𝑧𝛼}.

If 𝐻𝑎 ∶ 𝜇𝑋 − 𝜇𝑌 < 𝜃0, then 𝑃 = Φ(𝑧), i.e., lower-tail 𝑅 = {𝑧 < −𝑧𝛼}.

If 𝐻𝑎 ∶ 𝜇𝑋 − 𝜇𝑌 ≠ 𝜃0, then 𝑃 = 2(1 − Φ(|𝑧|)), i.e., two-tailed 𝑅 = {|𝑧| > 𝑧𝛼/2}.

4.1.2 Comparing means when the sample sizes are large

When the samples are large, the assumptions about the normality of the populations and knowledge of
the variances 𝜎2

𝑋 and 𝜎2
𝑌 can be relaxed. For sufficiently large 𝑚 and 𝑛, the difference of the sample

means, 𝑋 −𝑌 , has approximately a normal distribution for any underlying population distributions by the
Central Limit Theorem. Moreover, if 𝑚 and 𝑛 are large enough, replacing the population variances with
the sample variances 𝑆2

𝑋 and 𝑆2
𝑌 will not increase the variability of the estimator or the test statistic too

much.

Proposition 4.4. For 𝑚 and 𝑛 sufficiently large, an approximate 100(1 − 𝛼)% CI for 𝜇𝑋 − 𝜇𝑌 for two
samples from populations with any underlying distribution is given by

(𝑥 − 𝑦) ± 𝑧𝛼/2 ⋅ √
𝑠2

𝑋
𝑚 +

𝑠2
𝑌
𝑛
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Proposition 4.5. Under the same assumptions and procedures as in Proposition 4.3, a large-sample, i.e.,
𝑚 > 40 and 𝑛 > 40, test statistic,

𝑍 = 𝑋 − 𝑌 − 𝜃0

√
𝑆2

𝑋
𝑚 + 𝑆2

𝑌
𝑛

,

can be used in place of Equation 4.2 for hypothesis testing.

4.1.3 Comparing means of normal populations when variances are unknown and the
sample size is small

If 𝜎𝑋 and 𝜎𝑌 are unknown and either sample is small (e.g., 𝑚 < 30 or 𝑛 < 30), but both populations
are normally distributed, then we can use Student’s t distribution to make inferences. We provide the
following theorem without proof.

Theorem 4.1. When both population distributions are normal, the standardised variable

𝑇 = 𝑋 − 𝑌 − (𝜇𝑋 − 𝜇𝑌 )

√
𝑆2

𝑋
𝑚 + 𝑆2

𝑌
𝑛

∼ t(𝜈) ,

where the df 𝜈 is estimated from the data. Namely, 𝜈 is given by (round 𝜈 down to the nearest integer):

𝜈 =
(

𝑠2
𝑋
𝑚 + 𝑠2

𝑌
𝑛 )

2

(𝑠2
𝑋 /𝑚)2

𝑚−1 + (𝑠2
𝑌 /𝑛)2

𝑛−1

= (𝑠2
𝑋

+ 𝑠2
𝑌 )

2

𝑠4
𝑋

𝑚−1 +
𝑠4

𝑌
𝑛−1

, (4.3)

where 𝑠2
𝑋 and 𝑠2

𝑌 are point estimators of the sample variances; alternatively, we see that the formula
Equation 4.3 can also be written in terms of the standard error of the sample means:

𝑠𝑋 = 𝑠𝑋

√𝑚
and 𝑠𝑌 = 𝑠𝑌

√𝑛
.

The formula Equation 4.3 for the data-driven choice of 𝜈 calls for the computation of the standard error
of the sample means.

Proposition 4.6. A 100(1 − 𝛼)% CI for 𝜇𝑋 − 𝜇𝑌 for two samples of size 𝑚 and 𝑛 from normal populations
where the variances are unknown is given by

(𝑥 − 𝑦) ± 𝑡𝛼/2,𝜈√
𝑠2

𝑋
𝑚 +

𝑠2
𝑌
𝑛 ,

where we recall that 𝑡𝛼/2,𝜈 is the 𝛼/2 critical value of t(𝜈) with 𝜈 given by Equation 4.3.

Proposition 4.7. Assume that we sample iid 𝑋1, … , 𝑋𝑚 and iid 𝑌1, … , 𝑌𝑛 from normal populations with
unknown variances and means 𝜇𝑋 and 𝜇𝑌 , respectively, and that the 𝑋 and 𝑌 samples are independent.

Consider 𝐻0 ∶ 𝜇𝑋 − 𝜇𝑌 = 𝜃0. The test statistic is

𝑇 = 𝑋 − 𝑌 − 𝜃0

√
𝑆2

𝑋
𝑚 + 𝑆2

𝑌
𝑛

. (4.4)
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For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝜇𝑋 − 𝜇𝑌 > 𝜃0, then 𝑃 -value is the area under t(𝜈) to the right of 𝑡, i.e., upper-tail 𝑅 = {𝑡 > 𝑡𝛼,𝜈}.

If 𝐻𝑎 ∶ 𝜇𝑋 − 𝜇𝑌 < 𝜃0, then 𝑃 -value is the area under t(𝜈) to the left of 𝑡, i.e., lower-tail 𝑅 = {𝑡 < −𝑡𝛼,𝜈}.

If 𝐻𝑎 ∶ 𝜇𝑋 − 𝜇𝑌 ≠ 𝜃0, then 𝑃 -value is twice the area under t(𝜈) to the right of |𝑡|, i.e., two-tailed
𝑅 = {|𝑡| > 𝑡𝛼/2,𝜈}.

Here 𝜈 is given by Equation 4.3.

If the variances of the normal populations are unknown but are the same, 𝜎2
𝑋 = 𝜎2

𝑌 , then deriving CIs and
test statistics for comparing the means can be simplified by considering a combined or pooled estimator
for the single parameter 𝜎2. If we have two samples from populations with variance 𝜎2, each sample
provides an estimate for 𝜎2. That is, 𝑆2

𝑋 , based on the 𝑚 observations of the first sample, is one estimator
for 𝜎2 and another is given by 𝑆2

𝑌 , based on 𝑛 observations of the second sample. The correct way to
combine these two estimators into a single estimator for the sample variance is to consider the pooled
estimator of 𝜎2,

𝑆2
p = 𝑚 − 1

𝑚 + 𝑛 − 2𝑆2
𝑋 + 𝑛 − 1

𝑚 + 𝑛 − 2𝑆2
𝑌 . (4.5)

The pooled estimator is a weighted average that adjusts for differences between the sample sizes 𝑚 and
𝑛.

Why a weighted average?

If 𝑚 ≠ 𝑛, then the estimator with more samples will contain more information about the parameter
𝜎2. Thus, the simple average (𝑆2

𝑋 + 𝑆2
𝑌 )/2 wouldn’t be fair, would it?

Proposition 4.8. A 100(1 − 𝛼)% CI for 𝜇𝑋 − 𝜇𝑌 for two samples of size 𝑚 and 𝑛 from normal populations
where the variance 𝜎2 is unknown is given by

(𝑥 − 𝑦) ± 𝑡𝛼/2,𝑚+𝑛−2 ⋅ √𝑠2
p (

1
𝑚 + 1

𝑛) ,

where we recall that 𝑡𝛼/2,𝑚+𝑛−2 is the 𝛼/2 critical value of the t(𝜈) with 𝜈 = 𝑚 + 𝑛 − 2 df.

Similarly, one can consider a pooled t test, i.e., a hypothesis test based on the pooled estimator for the
variance as opposed to the two-sample t test in Proposition 4.7. In the case of a pooled t test, the test
statistic

𝑇 = 𝑋 − 𝑌 − 𝜃0

√𝑆2
p (

1
𝑚 + 1

𝑛 )

,

with the pooled estimator of the variance, replaces Equation 4.4 in Proposition 4.7 and the same proce-
dures are followed for determining the 𝑃 -value with 𝜈 = 𝑚 + 𝑛 − 2 in place of Equation 4.3. If you
have reasons to believe that 𝜎2

𝑋 = 𝜎2
𝑌 , these pooled t procedures are appealing because 𝜈 is very easy to

compute.

Robustness

Pooled 𝑡 procedures are not robust if the assumption of equalised variance is violated. Theoretically,
you could first carry out a statistical test 𝐻0 ∶ 𝜎2

𝑋 = 𝜎2
𝑌 on the equality of variances and then use a
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pooled t procedure if the null hypothesis is not rejected. However, there is no free lunch: the typical
F test for equal variances (see Section 4.4) is sensitive to normality assumptions. The two sample t
procedures, with the data-driven choice of 𝜈 in Equation 4.3, are therefore recommended unless, of
course, you have a very compelling reason to believe 𝜎2

𝑋 = 𝜎2
𝑌 .

4.2 Comparing paired samples

The preceding analysis for comparing population means was based on the assumption that a random sam-
ple 𝑋1, … , 𝑋𝑛 is drawn from a distribution with mean 𝜇𝑋 and that a completely independent random
sample 𝑌1, … , 𝑌𝑛 is drawn from a distribution with mean 𝜇𝑌 . Some situations, e.g., comparing observa-
tions before and after a treatment or exposure, necessitate the consideration of paired values.

Consider a random sample of iid pairs,

(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) ,

with E[𝑋𝑖] = 𝜇𝑋 and E[𝑌𝑖] = 𝜇𝑌 . If we are interested in making inferences about the difference 𝜇𝑋 − 𝜇𝑌 ,
then the paired differences

𝐷𝑖 = 𝑋𝑖 − 𝑌𝑖 , 𝑖 = 1, … , 𝑛 ,

constitute a sample with mean 𝜇𝐷 = 𝜇𝑋 − 𝜇𝑌 that can be treated using single-sample CIs and tests, e.g.,
see Section 3.1.3.

4.3 Comparing proportions

Consider a population containing a proportion 𝑝𝑋 of individuals satisfying a given property. For a sample
of size 𝑚 from this population, we denote the sample proportion by ̂𝑝𝑋 . Likewise, we consider a population
containing a proportion 𝑝𝑌 of individuals satisfying the same given property. For a sample of size 𝑛 from
this population, we denote the sample proportion by ̂𝑝𝑌 . We assume the samples from the 𝑋 and 𝑌
populations are independent. The natural estimator for the difference in population proportions 𝑝𝑋 − 𝑝𝑌
is the difference in the sample proportions ̂𝑝𝑋 − ̂𝑝𝑌 .

Provided the samples are much smaller than the population sizes (i.e., the populations are about 20 times
larger than the samples),

𝜇( ̂𝑝𝑋− ̂𝑝𝑌 ) = E[ ̂𝑝𝑋 − ̂𝑝𝑌 ] = 𝑝𝑋 − 𝑝𝑌 ,

and
𝜎2

( ̂𝑝𝑋− ̂𝑝𝑌 ) = Var[ ̂𝑝𝑋 − ̂𝑝𝑌 ] = 𝑝𝑋(1 − 𝑝𝑋)
𝑚 + 𝑝𝑌 (1 − 𝑝𝑌 )

𝑛 ,

because the count of individuals satisfying the given property in each population will be independent
draws from Binom(𝑚, 𝑝𝑋) and Binom(𝑛, 𝑝𝑌 ), respectively. Further, if 𝑚 and 𝑛 are large (e.g., 𝑚 ≥ 30 and
𝑛 ≥ 30), then ̂𝑝𝑋 and ̂𝑝𝑌 are (approximately) normally distributed. Standardizing ̂𝑝𝑋 − ̂𝑝𝑌 ,

𝑍 = ̂𝑝𝑋 − ̂𝑝𝑌 − (𝑝𝑋 − 𝑝𝑌 )

√
𝑝𝑋 (1−𝑝𝑋 )

𝑚 + 𝑝𝑌 (1−𝑝𝑌 )
𝑛

∼ N(0, 1) .

A CI for ̂𝑝𝑋 − ̂𝑝𝑌 then follows from the large-sample CI considered in Section 3.1.2.
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Proposition 4.9. An approximate 100(1 − 𝛼)% CI for 𝑝𝑋 − 𝑝𝑌 is given by

̂𝑝𝑋 − ̂𝑝𝑌 ± 𝑧𝛼/2√
̂𝑝𝑋(1 − ̂𝑝𝑋)

𝑚 + ̂𝑝𝑌 (1 − ̂𝑝𝑌 )
𝑛 , (4.6)

and, as a rule of thumb, can be reliably used if 𝑚 ̂𝑝𝑋 , 𝑚(1 − ̂𝑝𝑋), 𝑛 ̂𝑝𝑌 , and 𝑛(1 − ̂𝑝𝑌 ) are greater than or
equal to 10.

Proposition 4.9 does not pool the estimators for the population proportions. However, if we are consider-
ing a hypothesis test concerning the equality of the population proportions with the null hypothesis

𝐻0 ∶ 𝑝𝑋 − 𝑝𝑌 = 0 ,

then we assume 𝑝𝑋 = 𝑝𝑌 as our default position. Therefore, as a matter of consistency, we should
replace the standard error in Equation 4.6 with a pooled estimator for the standard error of the population
proportion,

̂𝑝 = 𝑚
𝑚 + 𝑛 ̂𝑝𝑋 + 𝑛

𝑚 + 𝑛 ̂𝑝𝑌 .

Proposition 4.10. Assume that 𝑚 ̂𝑝𝑋 , 𝑚(1 − ̂𝑝𝑋), 𝑛 ̂𝑝𝑌 , 𝑛(1 − ̂𝑝𝑌 ) are all greater than 10.

Consider 𝐻0 ∶ 𝑝𝑋 − 𝑝𝑌 = 0. The test statistic is

𝑍 = ̂𝑝𝑋 − ̂𝑝𝑌

√ ̂𝑝(1 − ̂𝑝) (
1
𝑚 + 1

𝑛 )

.

For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝑝𝑋 − 𝑝𝑌 > 0, then 𝑃 = 1 − Φ(𝑧), i.e., upper-tail 𝑅 = {𝑧 > 𝑧𝛼}.

If 𝐻𝑎 ∶ 𝑝𝑋 − 𝑝𝑌 < 0, then 𝑃 = Φ(𝑧), i.e., lower-tail 𝑅 = {𝑧 < −𝑧𝛼}.

If 𝐻𝑎 ∶ 𝑝𝑋 − 𝑝𝑌 ≠ 0, then 𝑃 = 2(1 − Φ(|𝑧|)), i.e., two-tailed 𝑅 = {|𝑧| > 𝑧𝛼/2}.

4.4 Comparing variances

For a random sample
𝑋1, … , 𝑋𝑚 ∼ N(𝜇𝑋 , 𝜎2

𝑋)

and an independent random sample
𝑌1, … , 𝑌𝑛 ∼ N(𝜇𝑌 , 𝜎2

𝑌 ) ,

the rv
𝐹 =

𝑆2
𝑋 /𝜎2

𝑋
𝑆2

𝑌 /𝜎2
𝑌

∼ F(𝑚 − 1, 𝑛 − 1) , (4.7)

that is, 𝐹 has an F distribution with df 𝜈1 = 𝑚−1 and 𝜈2 = 𝑛−1. The statistic 𝐹 in Equation 4.7 comprises
the ratio of variances 𝜎2

𝑋 /𝜎2
𝑌 and not the difference; therefore, the plausibility of 𝜎2

𝑋 = 𝜎2
𝑌 will be based

on how much the ratio differs from 1.
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Proposition 4.11. For the null hypothesis 𝐻0 ∶ 𝜎2
𝑋 = 𝜎2

𝑌 , the test statistic to consider is:

𝑓 =
𝑠2

𝑋
𝑠2

𝑌

and the 𝑃 -values are determined by the F(𝑚 − 1, 𝑛 − 1) distribution where 𝑚 and 𝑛 are the respective
sample sizes.

A 100(1 − 𝛼)% CI for the ratio 𝜎2
𝑋 /𝜎2

𝑌 is based on forming the probability,

𝑃 (𝐹1−𝛼/2,𝜈1,𝜈2 < 𝐹 < 𝐹𝛼/2,𝜈1,𝜈2) = 1 − 𝛼 ,

where 𝐹𝛼/2,𝜈1,𝜈2 is the 𝛼/2 critical value from the F(𝜈1 = 𝑚 − 1, 𝜈2 = 𝑛 − 1) distribution. Substituting
Equation 4.7 with point estimates for 𝐹 and manipulating the inequalities it is possible to isolate the ratio
𝜎2

𝑋 /𝜎2
𝑌 ,

𝑃
(

1
𝐹𝛼/2,𝜈1,𝜈2

𝑠2
𝑋

𝑠2
𝑌

<
𝜎2

𝑋
𝜎2

𝑌
< 1

𝐹1−𝛼/2,𝜈1,𝜈2

𝑠2
𝑋

𝑠2
𝑌 )

= 1 − 𝛼 .

Proposition 4.12. A 100(1 − 𝛼)% CI for the ratio of population variances 𝜎2
𝑋 /𝜎2

𝑌 is given by

(𝐹 −1
𝛼/2,𝑚−1,𝑛−1𝑠2

𝑋 /𝑠2
𝑌 , 𝐹 −1

1−𝛼/2,𝑚−1,𝑛−1𝑠2
𝑋 /𝑠2

𝑌 ) .

Proposition 4.13. Assume the population distributions are normal and the random samples are indepen-
dent of one another.

Consider 𝐻0 ∶ 𝜎2
𝑋 = 𝜎2

𝑌 . The test statistic is

𝐹 = 𝑆2
𝑋 /𝑆2

𝑌 .

For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝜎2
𝑋 > 𝜎2

𝑌 , then 𝑃 -value is 𝐴𝑅 = area under the F(𝑚 − 1, 𝑛 − 1) curve to the right of 𝑓.

If 𝐻𝑎 ∶ 𝜎2
𝑋 < 𝜎2

𝑌 , then 𝑃 -value is 𝐴𝐿 = area under the F(𝑚 − 1, 𝑛 − 1) curve to the left of 𝑓.

If 𝐻𝑎 ∶ 𝜎2
𝑋 ≠ 𝜎2

𝑌 , then 𝑃 -value is 2 ⋅ min(𝐴𝑅, 𝐴𝐿).
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5 Analysis of variance

Analysis of variance, shortened as ANOVA or AOV, is a collection of statistical models and estimation
procedures for analysing the variation among different groups. In particular, a single-factor ANOVA
provides a hypothesis test regarding the equality of two or more population means, thereby generalising
the one-sample and two-sample t tests considered in Section 3.1.3 and Section 4.1.3.

5.1 Single factor ANOVA test

Suppose that we have 𝑘 normally distributed populations with different means 𝜇1, … , 𝜇𝑘 and equal vari-
ances 𝜎2. We denote the rv for the 𝑗th measurement taken from the 𝑖th population by 𝑋𝑖𝑗 and the corre-
sponding sample observation by 𝑥𝑖𝑗 . For samples of size 𝑚1, … , 𝑚𝑘, we denote the sample means

𝑋𝑖 = 1
𝑚𝑖

𝑚𝑖

∑
𝑗=1

𝑋𝑖𝑗 ,

and sample variances

𝑆2
𝑖 = 1

𝑚𝑖 − 1

𝑚𝑖

∑
𝑗=1

(𝑋𝑖𝑗 − 𝑋𝑖)2 ,

for each 𝑖 = 1, … , 𝑘; likewise, we denote the associated point estimates for the sample means 𝑥1, … , 𝑥𝑘
and the sample variances 𝑠2

1, … , 𝑠2
𝑘. The average over all observations 𝑚 = ∑ 𝑚𝑖, called the grand mean,

is denoted by

𝑋 = 1
𝑚

𝑘

∑
𝑖=1

𝑚𝑖

∑
𝑗=1

𝑋𝑖𝑗 .

The sample variances 𝑠2
𝑖 , and hence the sample standard deviations, will generally vary even when the 𝑘

populations share the same variance; a rule of thumb is that the equality of variances is reasonable if the
largest 𝑠𝑖 is not much more than two times the smallest.

Alternative lingo

In the context of ANOVA, these 𝑘 populations are often referred to as treatment distributions.

We wish to test the equality of the population means, given by the null hypothesis,

𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 ,

versus the alternative hypothesis,
𝐻𝑎 ∶ at least two 𝜇𝑖 differ .

Note that if 𝑘 = 3 then 𝐻0 is true only if all three means are the same, i.e., 𝜇1 = 𝜇1 = 𝜇3, but there are
a number of ways which the alternative might hold: 𝜇1 ≠ 𝜇2 = 𝜇3 or 𝜇1 = 𝜇2 ≠ 𝜇3 or 𝜇1 = 𝜇3 ≠ 𝜇2 or
𝜇1 ≠ 𝜇2 ≠ 𝜇3.
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The test procedure is based on comparing a measure of the difference in variation among the sample
means, i.e., the variation between 𝑥𝑖’s, to a measure of variation within each sample.

Definition 5.1. The mean square for treatments is

MSTr = 1
𝑘 − 1

𝑘

∑
𝑖=1

𝑚𝑖(𝑋𝑖 − 𝑋)2 ,

and the mean square error is

MSE = 1
𝑚 − 𝑘

𝑘

∑
𝑖=1

(𝑚𝑖 − 1)𝑆2
𝑖 .

TheMSTr andMSE are statistics that measure the variation among sample means and the variation within
samples. We will also use MSTr and MSE to denote the calculated values of these statistics.

Proposition 5.1. The test statistic
𝐹 = MSTr

MSE
is the appropriate test statistic for the single-factor ANOVA problem involving 𝑘 populations (or treat-
ments) with a random sample of size 𝑚1, … , 𝑚𝑘 from each. When 𝐻0 is true,

𝐹 ∼ F(𝜈1 = 𝑘 − 1, 𝜈2 = 𝑚 − 𝑘) .

In the present context, a large test statistic value is more contradictory to 𝐻0 than a smaller value. There-
fore the test is upper-tailed, i.e., consider the area 𝐹𝛼 to the right of the critical value 𝐹𝛼,𝜈1,𝜈2 . We reject
𝐻0 if the value of the test statistic 𝐹 > 𝐹𝛼 .

Note 3: Average Salary Data

The Average Salary Data comprises average salaries reported by 20 local councils across the four
nations of the United Kingdom (England, N Ireland, Scotland and Wales). The sample means and
sample standard deviations are summarised in Table 5.1.

Table 5.1: Average Salary Data reported from 20 local councils.

Nation Average salaries (’000 £) Sample size Sample mean Sample sd
England 17, 12, 18, 13, 15, 12 6 14.5 2.588
N Ireland 11, 7, 9, 13 4 10.0 2.582
Scotland 15, 10, 13, 14, 13 5 13.0 1.871
Wales 10, 12, 8, 7, 9 5 9.2 1.924

Example 5.1. Consider the Average Salary Data reported in Note 3. Is the expected average salary in
each nation the same at the 5% level?

We begin by exploring the data through the generation and interpretation of some box plots. The box
plots in Figure 5.1 indicate that there may be a difference in median average salary by nation.

For 𝛼 = 0.05, we compute the upper-tail area 𝐹0.05 i.e. to the right of the critical value 𝐹0.05,3,16 by
consulting a statistical table or by using R to find 𝐹0.05 = 3.2388715.
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Figure 5.1: Box plots of the average mean salary data in Table Table 5.1 indicate five summary statistics:
the median, two hinges (first and third quartiles) and two whiskers (extending from the hinge
to the most extreme data point within 1.5 ⋅ IQR).

# alt: qf(.05, df1 = 3, df2 = 16, lower.tail = FALSE)
qf(1-.05, df1 = 4-1, df2 = 20-4)

[1] 3.238872

The grand mean is
𝑥 = 17 + 12 + 18 + ⋯ + 8 + 7 + 9

20 = 11.9 ,

and hence the variation among sample means is given by,

MSTr = 1
4 − 1 (𝑚1(𝑥1 − 𝑥)2 + ⋯ + 𝑚4(𝑥4 − 𝑥)2)

= (6(14.5 − 11.9)2 + 4(10.0 − 11.9)2 + 5(13.0 − 11.9)2 + 5(9.2 − 11.9)2) /3
= 32.5 .

The mean square error is

MSE = 1
20 − 4 ((𝑚1 − 1)𝑠2

1 + ⋯ (𝑚4 − 1)𝑠2
4)

= 5(2.588)2 + 3(2.582)2 + 4(1.871)2 + 4(1.924)2

16
= 5.14366

yielding the test statistic value

𝐹 = MSTr
MSE

= 32.5
5.14366 = 6.3184581 .

Since 𝐹 > 𝐹𝛼 we reject 𝐻0. The data do not support the hypothesis that the mean salaries in each nation
are identical at the 5% level.
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5.2 Confidence intervals

In Section 4.1, we gave a CI for comparing population means involving the difference 𝜇𝑋 − 𝜇𝑌 . In some
settings, we would like to give CIs for more complicated functions of population means 𝜇𝑖. Let

𝜃 =
𝑘

∑
𝑖=1

𝑐𝑖𝜇𝑖 ,

for constants 𝑐𝑖. As we assume the 𝑋𝑖𝑗 are normally distributed with E[𝑋𝑖𝑗] = 𝜇𝑖 and Var[𝑋𝑖𝑗] = 𝜎2, the
estimator

̂𝜃 =
𝑘

∑
𝑖=1

𝑐𝑖𝑋𝑖 ,

is normally distributed with

Var[ ̂𝜃] =
𝑘

∑
𝑖=1

𝑐2
𝑖 Var[𝑋𝑖] = 𝜎2

𝑘

∑
𝑖=1

𝑐2
𝑖

𝑚𝑖
.

We estimate 𝜎2 by the MSE and standardise the estimator to arrive at a t variable
̂𝜃 − 𝜃
𝜎 ̂𝜃

,

where 𝜎 ̂𝜃 is the estimated standard error of the estimator.

Proposition 5.2. A 100(1 − 𝛼)% CI for ∑ 𝑐𝑖𝜇𝑖 is given by

𝑘

∑
𝑖=1

𝑐𝑖𝑥𝑖 ± 𝑡𝛼/2,𝑚−𝑘

√√√
⎷

MSE
𝑘

∑
𝑖=1

𝑐2
𝑖

𝑚𝑖
.

Example 5.2. Determine a 90% CI for the difference in mean average salary for councils in Scotland and
England, based on the data available in Table 5.1

For 𝛼 = 0.10, the critical value 𝑡0.05,16 = 1.7458837 is found by looking in a table of t critical values or by
using R:

# alt: qt(0.1/2, 16, lower.tail = FALSE)
qt(1-0.1/2, df = 20 - 4)

[1] 1.745884

Then for the function 𝑥2 − 𝑥1,

(𝑥𝐸𝑛𝑔 − 𝑥𝑆𝑐𝑜)±𝑡0.05,16√MSE
√

1
𝑚𝐸𝑛𝑔

+ 1
𝑚𝑆𝑐𝑜

= (14.5 − 13.0) ± 1.7458837√5.14366√
1
6 + 1

5
= 1.5 ± 2.3976575 .

Thus, a 90% confidence interval for 𝜇𝐸𝑛𝑔 − 𝜇𝑆𝑐𝑜 is (−0.8977 , 3.898).
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Consider the following

How does the result in Example 5.2 compare to the t method in Section 4.1.3?
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6 Linear regression

Regression analysis allows us to study the relationship among two ormore rvs. Typically, we are interested
in the relationship between a response or dependent rv 𝑌 and a covariate 𝑋. The relationship between 𝑋
and 𝑌 will be explained through a regression function,

𝑟(𝑥) = E[𝑌 ∣ 𝑋 = 𝑥] = ∫ 𝑦𝑓(𝑦 ∣ 𝑥)𝑑𝑦 .

In particular, we shall assume that 𝑟 is linear,

𝑟(𝑥) = 𝛽0 + 𝛽1𝑥 , (6.1)

and estimate the intercept 𝛽0 and slope 𝛽1 of this linear model from sample data

(𝑌1, 𝑋1), … , (𝑌𝑚, 𝑋𝑚) ∼ 𝐹𝑌 ,𝑋 .

Alternative lingo

The covariates 𝑋 are also called predictor variables, explanatory variables, independent variables,
and/or features depending on who you are talking to.

6.1 Simple linear regression models

The simplest regression is when 𝑋𝑖 is one-dimensional and 𝑟(𝑥) is linear as in Equation 6.1. A linear
regression posits the expected value of 𝑌𝑖 is a linear function of the data 𝑋𝑖, but that 𝑌 deviates from its
expected value by a random amount for fixed 𝑥𝑖.

Definition 6.1. The simple linear regression model relates a random response 𝑌𝑖 to a set of independent
variables 𝑋𝑖,

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , (6.2)

where the intercept 𝛽0 and slope 𝛽1 are unknown parameters and the random deviation or random error 𝜖𝑖
is a rv assumed to satisfy:

1. E[𝜖𝑖 ∣ 𝑋𝑖 = 𝑥𝑖] = 0,
2. Var[𝜖𝑖 ∣ 𝑋𝑖 = 𝑥𝑖] = 𝜎2 does not depend on 𝑥𝑖,
3. 𝜖𝑖 and 𝜖𝑗 are independent for 𝑖, 𝑗 = 1, … , 𝑚.

From the assumptions on 𝜖𝑖, the linear model Equation 6.2 implies

E[𝑌𝑖 ∣ 𝑋𝑖 = 𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖 .
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Thus, if ̂𝛽0 and ̂𝛽1 are estimators of 𝛽0 and 𝛽1, then the fitted line is

̂𝑟(𝑥) = ̂𝛽0 + ̂𝛽1𝑥

and the predicted or fitted value 𝑌𝑖 = ̂𝑟(𝑋𝑖) is an estimator for E[𝑌𝑖 ∣ 𝑋𝑖 = 𝑥𝑖]. The residuals are defined
to be

̂𝜖𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − ( ̂𝛽0 + ̂𝛽1𝑋𝑖) . (6.3)
The residual sums of squares,

RSS =
𝑚

∑
𝑖=1

̂𝜖2
𝑖 , (6.4)

measures how well the regression line ̂𝑟 fits the data (𝑌1, 𝑋1), … , (𝑌𝑚, 𝑋𝑚). The least squares estimates of
̂𝛽0 and ̂𝛽1 are the values that minimize the RSS in Equation 6.4.

Theorem 6.1. The least squares estimates for ̂𝛽1 and ̂𝛽0 are given by, respectively,

̂𝛽1 =
∑𝑚

𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌 )
∑𝑚

𝑖=1(𝑋𝑖 − 𝑋)2
=

𝑆𝑥𝑦
𝑆𝑥𝑥

, (6.5)

and
̂𝛽0 = 𝑌 − ̂𝛽1𝑋 . (6.6)

Equation 6.4 is a function of ̂𝛽0 and ̂𝛽1 from the definition of the residuals Equation 6.3. Then Equation 6.5
and Equation 6.6 follow by equating the partial derivatives of Equation 6.4 to zero. The ̂𝛽0 and ̂𝛽1 are the
unique solution to this linear system.

Alternative lingo

The RSS is sometimes referred to as the error sum of squares and abbreviated SSE (no, the order is
not a typo).

Example 6.1. In Figure 6.1 and Figure 6.2, we consider the Cherry Tree Data (see Table 2.1) and
discussion). We fit a least squares regression of timber volume (response variable) to the tree’s diameter
(independent variable). As you would expect, the timber yield increases with diameter.

The R code below can be used to calculate the least squares regression and residuals.

data(trees)
y <- trees$Volume
x <- trees$Girth # NB: this is the diameter; data mislabeled!
fit <- lm(y ~ x)
e <- resid(fit)
yhat <- predict(fit)

The fit data frame contains the estimates for ̂𝛽0 and ̂𝛽1:

fit$coefficients

(Intercept) x
-36.943459 5.065856
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Both Figure 6.1 and Figure 6.2 are scatter plots of the observed values 𝑦. In Figure 6.1, the regression
line ̂𝑦 is plotted along with the residuals ̂𝜖. In Figure 6.2, the sample mean 𝑦 is plotted together with the
deviations 𝑦 − 𝑦.

β0 = − 36.943 ,   β1 = 5.066
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Figure 6.1: Linear regression (or least squares fit) of Volume to Diameter from the Cherry Tree Data.
The vertical bars between the observed data point and the regression line indicate the error
in the fit (the least squares residual). The residuals are squared and summed to yield the RSS
(alt: SSE).

6.2 Estimating 𝜎2 for linear regressions

The parameter 𝜎2 (the variance of the random deviation) determines the variability in the regression
model.

Theorem 6.2. An unbiased estimate of 𝜎2 is given by

𝜎2 = 𝑠2 = RSS
𝑚 − 2 = 1

𝑚 − 2

𝑚

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 . (6.7)

In Figure 6.3, we present a least squares regression of timber volume on both tree diameter and height (for
the Cherry Tree Data). As expected, the regressions indicate the volume increases with both covariates.
Estimates for the variance of the random deviation Equation 6.7 in both regression models, 𝜎2

𝐷 and 𝜎2
𝐻 ,

respectively, are computed to be 𝑠2
𝐷 = 18.08 and 𝑠2

𝐻 = 179.48. Thus, we see that small variances lead to
observations of (𝑥𝑖, 𝑦𝑖) that sit tightly around the regression line, in contrast to large variances that lead
to a large cloud of points.
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Figure 6.2: The deviations about the sample mean 𝑦. The sum of the squared deviations or SST (total sum
of squares) is a measure of the total variation in the observations.
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Figure 6.3: For the Cherry Tree Data, we estimate the variance to be 𝑠2
𝐷 = 18.08 (for Diameter) and

𝑠2
𝐻 = 179.48 (for Height); small variances lead to observations of (𝑥𝑖, 𝑦𝑖) that sit tightly around
the regression line, in contrast to large variances that lead to a large cloud of points.
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Why do we lose two degrees of freedom?

In Theorem 6.2, the number in the denominator is the df associated with the RSS and 𝑠2. To calculate
RSS, you must estimate two parameters 𝛽0 and 𝛽1, which results in the loss of two df. Hence the
𝑚 − 2.

We note to make inferences, the statistic
𝑆2 = RSS

𝑚 − 2
is an unbiased estimator or 𝜎2 and the random variable

(𝑚 − 2)𝑆2

𝜎2 ∼ 𝜒2(𝑚 − 2) .

Moreover, the statistic 𝑆2 is independent of both ̂𝛽0 and ̂𝛽1.

6.3 Inferences for least-squares parameters

If 𝜖𝑖 in Equation 6.2 is assumed to be normally distributed, then we can derive the sampling distributions
of the estimators ̂𝛽0 and ̂𝛽1. Hence, we can use these sampling distributions to make inferences about the
parameters 𝛽0 and 𝛽1.

Provided iid 𝜖𝑖 ∣ 𝑋𝑖 ∼ N(0, 𝜎2), the least-squares estimators possess the following properties.

1. Both ̂𝛽0 and ̂𝛽1 are normally distributed.
2. Both ̂𝛽0 and ̂𝛽1 are unbiased, i.e., E[ ̂𝛽𝑖] = 𝛽𝑖 for 𝑖 = 0, 1.
3. Var[ ̂𝛽0] = 𝑐00𝜎2 where 𝑐00 = ∑𝑚

𝑖=1 𝑥2
𝑖 /(𝑚𝑆𝑥𝑥).

4. Var[ ̂𝛽1] = 𝑐11𝜎2 where 𝑐11 = 1/𝑆𝑥𝑥.
5. Cov[ ̂𝛽0, ̂𝛽1] = 𝑐01𝜎2 where 𝑐01 = −𝑥/𝑆𝑥𝑥.

These properties can be determined by working directly from Equation 6.5 and Equation 6.6.

Proposition 6.1. Consider 𝐻0 ∶ 𝛽𝑖 = 𝛽𝑖0. The test statistic is

𝑇 =
̂𝛽𝑖 − 𝛽𝑖0

𝑆√𝑐𝑖𝑖
. (6.8)

For a hypothesis test at level 𝛼, we use the following procedure:

If 𝐻𝑎 ∶ 𝛽𝑖 > 𝛽𝑖0, then 𝑃 -value is the area under t(𝑚 − 2) to the right of 𝑡.

If 𝐻𝑎 ∶ 𝛽𝑖 < 𝛽𝑖0, tthen 𝑃 -value is the area under t(𝑚 − 2) to the left of 𝑡.

If 𝐻𝑎 ∶ 𝛽𝑖 ≠ 𝛽𝑖0, then 𝑃 -value is twice the area under t(𝑚 − 2) to the right of |𝑡|.

A confidence interval for 𝛽𝑖, based on the statistic Equation 6.8, can be given following the procedures in
Chapter 3.

Proposition 6.2. A 100(1 − 𝛼)% CI for 𝛽𝑖 is given by

̂𝛽𝑖 ± 𝑡𝛼/2,𝑚−2𝑆√𝑐𝑖𝑖 .
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6.4 Correlation

Let (𝑋1, 𝑌1), … , (𝑋𝑚, 𝑌𝑚) denote a random sample from a bivariate normal distribution with E[𝑋𝑖] = 𝜇𝑋 ,
E[𝑌𝑖] = 𝜇𝑌 , Var[𝑋𝑖] = 𝜎2

𝑋 , Var[𝑌𝑖] = 𝜎2
𝑌 , and correlation coefficient 𝜌. The sample correlation coefficient

is given by,

𝑟 =
∑𝑚

𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌 )

√∑𝑚
𝑖=1(𝑋𝑖 − 𝑋)2 ∑𝑚

𝑖=1(𝑌𝑖 − 𝑌 )2
, (6.9)

which can be rewritten in terms of 𝑆𝑥𝑥, 𝑆𝑥𝑦, and 𝑆𝑦𝑦:

𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥𝑆𝑦𝑦
= ̂𝛽1√

𝑆𝑥𝑥
𝑆𝑦𝑦

,

using Equation 6.5 and we see that 𝑟 and ̂𝛽1 have the same sign. A |𝑟| close to 1 means that the regression
line is a good fit to the data, and, similarly, an |𝑟| close to 0 means a poor fit to the data. Note that the cor-
relation coefficient (and the least squares regression) are only suitable for describing linear relationships;
a nonlinear relationship can also yield 𝑟 near zero (see Figure 6.4).

(a) r ≈ + 1,  linear relationship (b) r ≈ − 1,  linear relationship

(c) r ≈ 0,  no relationship apparent (d) r ≈ 0,  nonlinear relationship

Figure 6.4: Correlations range from −1 to 1 with |𝑟| = 1 indicating a strong linear relationship and 𝑟 near
zero indicating the absence of a linear relationship.

6.5 Prediction using linear models

Once a model is fit, it can be used to predict a value of 𝑦 for a given 𝑥. However, the model only gives the
most likely value of 𝑦; a corresponding prediction interval is usually more appropriate.

Proposition 6.3. A 100(1 − 𝛼)% prediction interval for an actual value of 𝑌 when 𝑥 = 𝑥∗ is given by

( ̂𝛽0 + ̂𝛽1𝑥∗) ± 𝑡𝛼/2,𝑚−2𝑆√1 + 1
𝑛 + (𝑥∗ − 𝑥)2

𝑆𝑥𝑥
.
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Prediction versus confidence intervals

The prediction interval is different from the confidence interval for expected 𝑌 . Note that the length
of the confidence interval for E[𝑌 ] when 𝑥 = 𝑥∗ is given by

2 ⋅ 𝑡𝛼/2𝑆√
1
𝑛 + (𝑥∗ − 𝑥)2

𝑆𝑥𝑥

whereas the length for the prediction interval of 𝑌 is

2 ⋅ 𝑡𝛼/2𝑆√1 + 1
𝑛 + (𝑥∗ − 𝑥)2

𝑆𝑥𝑥
.

Thus the prediction intervals for an actual value of 𝑌 are longer than the confidence intervals for
E[𝑌 ] if both are determined for the same value 𝑥∗.

The linear model
E[𝑌 ∣ 𝑋 = 𝑥] = 𝛽0 + 𝛽1𝑥 ,

assumes that the conditional expectation of 𝑌 for a fixed value of 𝑋 is a linear function of the 𝑥 value. If
we assume that (𝑋, 𝑌 ) has a bivariate normal distribution, then

𝛽1 = 𝜎𝑌
𝜎𝑋

𝜌 ,

and thus, for the simple hypothesis tests we have considered (Table 2.2), statistical tests for 𝛽1 and 𝜌 are
equivalent.
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7 Categorical data

7.1 Multinomial experiments

Suppose we have a population divided into 𝑘 > 2 distinct categories. We consider an experiment where
we select 𝑚 individuals (or objects) from the population and categorise each. We denote the population
proportion in the 𝑖th category by 𝑝𝑖. If the sample size 𝑚 is much smaller than the population size 𝑀
(so that the 𝑚 trials are independent), this experiment will be approximately multinomial with success
probability 𝑝𝑖 for each category, 𝑖 = 1, … , 𝑘.

Before the experiment is performed, we denote the number (or count) of the trials resulting in category 𝑖
by the rv 𝑁𝑖. The expected number of trails that result in category 𝑖 is given by

E[𝑁𝑖] = 𝑚𝑝𝑖 , 𝑖 = 1, … , 𝑘 . (7.1)

After the experiment is performed, we denote the corresponding observed value by 𝑛𝑖. Since the trials
result in distinct categories,

𝑘

∑
𝑖=1

𝑁𝑖 =
𝑘

∑
𝑖=1

𝑛𝑖 = 𝑚 ,

which indicates that, for a given 𝑚, we only need to observe 𝑘 − 1 of the variables to be able to work out
what the 𝑘th variable should be.

7.2 Goodness-of-fit for a single factor

We are interested in making inferences about the proportion parameters 𝑝𝑖. Specifically, we will consider
the null hypothesis,

𝐻0 ∶ 𝑝1 = 𝑝10 , 𝑝2 = 𝑝20 , ⋯ , 𝑝𝑘 = 𝑝𝑘0 , (7.2)

that completely specifies a value 𝑝𝑖0 for each 𝑝𝑖. The alternative hypothesis 𝐻𝑎 will state that 𝐻0 is not
true, i.e., that at least one 𝑝𝑖 is different from the value 𝑝𝑖0 claimed under the null 𝐻0.

Notation

Here for 𝑖 = 1, … , 𝑘 we use the notation 𝑝𝑖0 to denote the value of 𝑝𝑖 claimed under the null hypoth-
esis.

Provided the null hypothesis in Equation 7.2 is true, the expected values Equation 7.1 can be written in
terms of the expected frequencies,

E[𝑁𝑖] = 𝑚𝑝𝑖0 , 𝑖 = 1, … , 𝑘 .

Often the 𝑛𝑖, referred to as the observed cell counts, and the corresponding 𝑚𝑝𝑖0, referred to as the expected
cell counts, are tabulated, for example, as in Table 7.1.
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Table 7.1: Observed and expected cell counts.

Category 𝑖 = 1 𝑖 = 2 ⋯ 𝑖 = 𝑘 Row total
Observed 𝑛1 𝑛2 ⋯ 𝑛𝑘 𝑚
Expected 𝑚𝑝10 𝑚𝑝20 ⋯ 𝑚𝑝𝑘0 𝑚

The test procedure assesses the discrepancy between the value of the observed and expected cell counts.
This discrepancy, or goodness of fit, is measured by the squared deviations divided by the expected
count.

Why divide by expected cell counts?

The division by the expected cell counts accounts for possible differences in the relative magnitude
of the observed/expected counts.

Theorem 7.1. For 𝑚𝑝𝑖 ≥ 5 for 𝑖 = 1, … , 𝑘, the rv

𝑉 =
𝑘

∑
𝑖=1

(𝑁𝑖 − 𝑚𝑝𝑖)2

𝑚𝑝𝑖
∼ 𝜒2(𝑘 − 1) ,

that is, 𝑉 has approximately a 𝜒2 distribution with 𝜈 = 𝑘 − 1 df.

Proposition 7.1. Consider the null

𝐻0 ∶ 𝑝1 = 𝑝10, 𝑝2 = 𝑝20, ⋯ , 𝑝𝑘 = 𝑝𝑘0 ,

and the alternative
𝐻𝑎 ∶ 𝑝𝑖 ≠ 𝑝𝑖0 for at least one 𝑖 .

The test statistic is

𝑉 =
𝑘

∑
𝑖=1

(𝑁𝑖 − 𝑚𝑝𝑖0)2

𝑚𝑝𝑖0
.

As a rule of thumb, provided 𝑚𝑝𝑖0 ≥ 5 for all 𝑖 = 1, … , 𝑘, then the 𝑃 -value is the area under 𝜒2(𝑘 − 1) to
the right of 𝑣.

If 𝑚𝑝𝑖0 < 5 for some 𝑖 then it may be possible to combine the categories such that the new categorizations
satisfy the assumptions of Proposition 7.1.

What about partial information?

Things are much more complicated if the category probabilities are not entirely specified.
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7.3 Test for the independence of factors

In Section 7.2, we considered categorising a population into a single factor. We now consider a single
population where each individual is categorised into two factors with 𝐼 distinct categories for the first
factor and 𝐽 distinct categories for the second factor. Each individual from the population belongs to
exactly one of the 𝐼 categories of the first factor and exactly one of the 𝐽 categories of the second factor.
We want to determine whether or not there is any dependency between the two factors.

For a sample of 𝑚 individuals, we denote by 𝑛𝑖𝑗 the count of the 𝑚 samples that fall both in category 𝑖 of
the first factor and category 𝑗 of the second factor, for 𝑖 = 1, … , 𝐼 and 𝑗 = 1, … , 𝐽 . A contingency table
with 𝐼 rows and 𝐽 columns (i.e., 𝐼𝐽 cells) will be used to record the 𝑛𝑖𝑗 counts (in an obvious way). Let
𝑝𝑖𝑗 be the proportion of individuals in the population who belong in category 𝑖 of factor 1 and category
𝑗 of factor 2. Then, the probability that a randomly selected individual falls in category 𝑖 of factor 1 is
found by summing over all 𝑗:

𝑝𝑖 =
𝐽

∑
𝑗=1

𝑝𝑖𝑗 ,

and likewise, the probability that a randomly selected individual falls in category 𝑗 of factor 2 is found
by summing over all 𝑖:

𝑝𝑗 =
𝐼

∑
𝑖=1

𝑝𝑖𝑗 .

The null hypothesis that we will be interested in adopting is

𝐻0 ∶ 𝑝𝑖𝑗 = 𝑝𝑖 ⋅ 𝑝𝑗 ∀(𝑖, 𝑗) , (7.3)

that is, an individual’s category in factor 1 is independent of the category in factor 2.

Following the same program as for the single category goodness-of-fit test, we note that assuming the
null hypothesis Equation 7.3 is true, then the expected count in cell 𝑖, 𝑗 is

E[𝑁𝑖𝑗] = 𝑚𝑝𝑖𝑗 = 𝑚𝑝𝑖𝑝𝑗 ;

and we estimate 𝑝𝑖 and 𝑝𝑗 by the appropriate sample proportion:

̂𝑝𝑖 = 𝑛𝑖
𝑚 , 𝑛𝑖 = ∑

𝑗
𝑛𝑖𝑗 (row totals) ,

and
̂𝑝𝑗 =

𝑛𝑗
𝑚 , 𝑛𝑗 = ∑

𝑖
𝑛𝑖𝑗 (column totals) .

Thus, the expected cell count is given by

̂𝑒𝑖𝑗 = 𝑚 ̂𝑝𝑖 ̂𝑝𝑗 =
𝑛𝑖𝑛𝑗
𝑚 ,

and we assess the goodness of fit between the observed cell count 𝑛𝑖𝑗 and the expected cell count ̂𝑒𝑖𝑗.

Proposition 7.2. Assume the null hypothesis

𝐻0 ∶ 𝑝𝑖𝑗 = 𝑝𝑖𝑝𝑗 for all 𝑖 = 1, … , 𝐼 , 𝑗 = 1, … , 𝐽 ,

against the alternative hypothesis
𝐻𝑎 ∶ 𝐻0 is not true .
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The test statistic is

𝑉 =
𝐼

∑
𝑖=1

𝐽

∑
𝑗=1

(𝑁𝑖𝑗 − ̂𝑒𝑖𝑗)2

̂𝑒𝑖𝑗
.

As a rule of thumb, provided ̂𝑒𝑖𝑗 ≥ 5 for all 𝑖, 𝑗 andwhen𝐻0 is true, then the test statistic has approximately
a 𝜒2(𝜈) distribution with 𝜈 = (𝐼 −1)(𝐽 −1) df. For a hypothesis test at level 𝛼, the procedure is upper-tailed,
and the 𝑃 -value is the area under 𝜒2(𝜈) to the right of 𝑣.

Alternative lingo

Contingency is just another word for dependency in the context of goodness-of-fit tables.
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8 Quality control

Quality control is an area of applied statistics that makes interventions to maintain or improve the outcome
of industrial processes. Random variations in output processes might negatively impact the quality of a
product. We want to identify the sources of random output-process variations that might have assignable
causes. Control charts are a tool that helps us to recognise when industrial processes are no longer con-
trolled so that one might then seek to identify assignable causes.

8.1 Control charts

The essential elements of control charting involve specifying a control region and then analysing time-
series data. We will specify a baseline value along with an upper and lower control limit and assume
that a process is under control unless a test statistic suggests otherwise. To construct a control chart, one
collects data about a process at fixed points of time and calculates the running value of a quality statistic.
Suppose the quality statistic exceeds the upper or lower control limits. In that case, the process is deemed
out of control, and the product quality is assumed to be negatively impacted.

Default position

The default position adopted for quality control will be reminiscent of hypothesis testing: “assume
that a process is under control unless a test statistic suggests otherwise.”

The process of creating a control chart is best illustrated through an extended example, like Example 8.1
provided below.

Example 8.1. Here we consider the typical 3𝜎 control charting for a process mean 𝑋 based on estimated
parameters. That is, we assume the generating process 𝑋 is normally distributed with unknown param-
eters 𝜇 and 𝜎2. We seek to estimate the mean 𝑋. Our control region is specified to be three standard
deviations; the process is in control if it remains within three standard deviations of a baseline value.

Note 4: Beer Production Data

The Beer Production Data contains measurements of the features OG, ABV, pH, and IBU for 50
batches of each of three types of product (Premium Lager, IPA, and Light Lager).

beer |> glimpse()

Rows: 150
Columns: 6
$ Batch_Id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ~
$ OG <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5~
$ ABV <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4~
$ pH <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1~
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$ IBU <dbl> 9.0, 10.0, 7.0, 9.0, 8.0, 7.7, 7.4, 7.1, 6.8, 6.5, 6.2, 5.9, 5.6, 5.3, ~
$ Beer <chr> "Premium Lager", "Premium Lager", "Premium Lager", "Premium Lager", "Pr~

Let’s consider the Beer Production Data in Note 4. We are interested in the IPA’s pH value, which
influences saccharification. We assume that three batches of IPA are produced per day, and we prepare
the data as follows.

ipa <- beer |>
select(Batch_Id, pH, Beer) |>
filter(Beer == "IPA") |>
rename(Day = Batch_Id)

m <- 3 # three batches per day
k <- 16 # number of days
ipa$Day[1:(m*k)] <- rep(1:k, each = m)
ipa <- ipa[1:(m*k),]

The prepared data, ipa, is summarized in the Table 8.1.

ipa_stat <- ipa |>
group_by(Day) |>
summarise(obs = list(pH), mean = signif(mean(pH), digits = 4),

sd = signif(sd(pH), digits = 4), range = max(pH) - min(pH))
ipa_stat |>
kbl(align = "rcccc", booktabs = T, escape = F) |>
kable_styling(latex_options = c("striped"))

We first observe that the pH measurements are (at least approximately) normal, as seen in the quantile-
quantile plot in Figure 8.1.

ipa |> ggplot(aes(sample = pH)) + stat_qq() + stat_qq_line()

3.5

4.0

4.5

5.0

−2 −1 0 1 2
x

y

Figure 8.1: Normal quantile-quantile plot of observed pH measurements of the IPA batches.

79



Table 8.1: Observations and summary statistics for the Beer Production Data.

Day obs mean sd range
1 4.7, 4.5, 4.9 4.700 0.20000 0.4
2 4.0, 4.6, 4.5 4.367 0.32150 0.6
3 4.7, 3.3, 4.6 4.200 0.78100 1.4
4 3.9, 3.5, 4.2 3.867 0.35120 0.7
5 4.0, 4.7, 3.6 4.100 0.55680 1.1
6 4.4, 4.5, 4.1 4.333 0.20820 0.4
7 4.5, 3.9, 4.8 4.400 0.45830 0.9
8 4.0, 4.9, 4.7 4.533 0.47260 0.9
9 4.3, 4.4, 4.8 4.500 0.26460 0.5

10 5.0, 4.5, 3.5 4.333 0.76380 1.5
11 3.8, 3.7, 3.9 3.800 0.10000 0.2
12 5.1, 4.5, 4.5 4.700 0.34640 0.6
13 4.7, 4.4, 4.1 4.400 0.30000 0.6
14 4.0, 4.4, 4.6 4.333 0.30550 0.6
15 4.0, 3.3, 4.2 3.833 0.47260 0.9
16 4.2, 4.2, 4.3 4.233 0.05774 0.1

We consider the data for pH readings from three batches of IPA taken over sixteen days (𝑘 = 16) presented
in Table 8.1. The Table includes the sample mean per day, 𝑥, the sample standard deviation, 𝑠, and the
range of values per day, max 𝑥𝑖 − min 𝑥𝑖 (each based on 𝑚 = 3 batches).

We estimate the mean

𝜇 = 1
𝑘

𝑘

∑
𝑖=1

𝑥𝑖 ,

by averaging the means found for the 𝑘 days and, similarly, estimating the mean of the sample standard
deviation,

𝑠 = 1
𝑘

𝑘

∑
𝑖=1

𝑠𝑖 ,

by averaging the sample standard deviations for the 𝑘 days. It can be shown that

𝜎 = 𝑆
𝑎𝑚

is an unbiased estimator of 𝜎 where

𝑎𝑚 = √2Γ(𝑚/2)
√𝑚 − 1Γ ((𝑛 − 1)/2)

.

Thus, we compute the 3𝜎 upper and lower control limits, respectively,

UCL = 𝜇 + 3 𝑠
𝑎𝑚√𝑚
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and
LCL = 𝜇 − 3 𝑠

𝑎𝑚√𝑚
.

The computations in R follow, along with the resulting control chart in Figure 8.2.

a <- function(m){ sqrt(2) * gamma(m/2) / (sqrt(m-1) * gamma((m-1)/2)) }
muhat = sum(ipa_stat$mean) / k
sbar = sum(ipa_stat$sd) / k
lcl = muhat - 3*sbar / (a(m) * sqrt(m))
ucl = muhat + 3*sbar / (a(m) * sqrt(m))

ggplot(ipa_stat, aes(x = Day)) + geom_point(aes(y = mean)) +
geom_hline(aes(yintercept = muhat, color = "Mean"), linewidth = lsz) +
geom_hline(aes(yintercept = lcl, color = "LCL"), linewidth = lsz*1.5) +
geom_hline(aes(yintercept = ucl, color = "UCL"), linewidth = lsz*1.5) + ylab("pH") +

theme(legend.justification = c(1,1), legend.position = c(0.9,0.9),
legend.title = element_blank(),
legend.box.margin = margin(c(4, 4, 4, 4), unit = "pt"))
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Figure 8.2: The 3𝜎 control chart illustrates that with respect to pH the brewing process is in-control over
the selected timeframe as the observations fall within the (LCL,UCL) control interval.

From Figure 8.2, we observe for each day the process is in-control as the observed mean pH values fall
within the control limits (LCL,UCL). If this were not the case, our initial assumption that the process is
in control would be violated. The violation of the assumption would require that we seek to identify an
assignable cause for the variation. If a cause could be identified, we would need to recompute our control
limits with the observations that were out of control removed.
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Curated Content

Below we provide links to supplementary online material. Hopefully, some of the items will inspire you
to view the module material in a broader context and lead to further investigations.

Investigation 1

What is Statistics?

• Cambridge Ideas - Professor Risk
https://www.youtube.com/watch?v=a1PtQ67urG4
Prof David Spiegelhalter (Cambridge University) discusses public understanding of risk. You
may also be interested in reading (Spiegelhalter 2020).

• The Joy of Statistics
https://www.youtube.com/watch?v=jbkSRLYSojo
Prof Hans Rosling (Karolinska Institute and Gapminder Foundation) analyses data from 200
Countries over 200 Years in 4 Minutes - The Joy of Stats - BBC Four.

• Teach statistics before calculus!
https://www.ted.com/talks/arthur_benjamin_teach_statistics_before_calculus
Prof Arthur Benjamin (Harvey Mudd College) argues that the pinnacle of math education is
probability and statistics — not calculus.

• Kaggle
https://www.kaggle.com/
Towards data science.
https://www.youtube.com/watch?v=TNzDMOg_zsw
What’s Kaggle?

Investigation 2

Defence against the dark arts.

• Three ways to spot bad statistics
https://www.ted.com/talks/mona_chalabi_3_ways_to_spot_a_bad_statistic
Mona Chalabi (Data Journalist) discusses three ways to spot bad statistics.

• Statistics Done Wrong
https://www.statisticsdonewrong.com/
A book by Dr Alex Reinhart (Carnegie Mellon University).
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• How to defend yourself against misleading statistics in the news
https://www.youtube.com/watch?v=mJ63-bQc9Xg
Sanne Blauw (Journalist) discusses how the presentation of statistics can mislead.

Investigation 3

Data analysis and visualisation.

• The Grammar of Graphics
https://www.youtube.com/watch?v=h-62NwWUI5c
What Makes A Good Visualisation? Rhys Jackson from RocketMill, a UK Digital Marketing
Agency, gives a perspective on visualising data from a marketing perspective.
https://www.youtube.com/watch?v=kepKM7Z2O54
David Keyes (RStudio) discusses how the grammar of graphics underpins the ggplot2 data
visualization package in R.

• Same Stats, Different Graphs
https://www.autodeskresearch.com/publications/samestats
Generating Datasets with Varied Appearance and Identical Statistics through Simulated An-
nealing (ACMSIGCHI Conference onHuman Factors in Computing Systems) by JustinMate-
jka, George Fitzmaurice.

• Why do we so often use 0.05 for hypothesis testing?
https://www.openintro.org/book/stat/why05/
In this online exercise, you will gain an improved understanding of what a significance level
is, and why a value in the neighbourhood of 0.05 is reasonable as a default.

• Data visualisations
https://flowingdata.com/
FlowingData blog by Nathan Yau.
https://fivethirtyeight.com/
FiveThirtyEight blog by Nate Silver.

• Storytelling with data
http://www.storytellingwithdata.com/blog
Blog with nice hints and tips for how to present data in tables, graphics, and visualisations.
https://community.storytellingwithdata.com/challenges
Monthly challenge.

Investigation 4

Statistical paradoxes.

• How statistics can be misleading (TED-Ed)
https://www.ted.com/talks/mark_liddell_how_statistics_can_be_misleading
Mark Liddell (Educator) discusses Simpson’s Paradox in this TED-Ed animation.

• Low birth-weight paradox
https://www.wikiwand.com/en/Low_birth-weight_paradox

84

https://www.youtube.com/watch?v=mJ63-bQc9Xg
https://www.youtube.com/watch?v=h-62NwWUI5c
https://www.youtube.com/watch?v=kepKM7Z2O54
https://www.autodeskresearch.com/publications/samestats
https://www.openintro.org/book/stat/why05/
https://flowingdata.com/
https://fivethirtyeight.com/
http://www.storytellingwithdata.com/blog
https://community.storytellingwithdata.com/challenges
https://www.ted.com/talks/mark_liddell_how_statistics_can_be_misleading
https://www.wikiwand.com/en/Low_birth-weight_paradox


• Gambler’s Fallacy
https://www.youtube.com/watch?v=4eVluL-idkM
Prof Kelly Shue (Chicago Booth) discusses the gambler’s fallacy.

Investigation 5

The law and interpreting statistics.

• How stats fool juries.
https://youtu.be/kLmzxmRcUTo
Prof Peter Donnelly (Oxford University) discusses common mistakes in interpreting statistics.

• Measurement Uncertainty Calculator (MUCalc)
https://discovery.dundee.ac.uk/en/publications/measurement-uncertainty-calculator-mucalc
The Leverhulme Research Centre for Forensic Science Measurement Uncertainty Calculator
(MUCalc) is an application for calculating measurement uncertainty in accordance with the
standards of International Organization for Standardization ISO/IEC 17025.

• Prosecutor’s fallacy
https://www.wikiwand.com/en/Prosecutor%27s_fallacy
A fallacy of statistical reasoning, typically used by a prosecutor to exaggerate the likelihood
of guilt: because 𝑃 (hypothesis ∣ evidence) ≠ 𝑃 (evidence ∣ hypothesis)!

Investigation 6

Data-driven decision making in epidemiology.

• Project Tycho
https://www.tycho.pitt.edu/
Digitized archival epidemiological data for the United States and the world.
https://www.youtube.com/watch?v=Kn9OJy1BPDo
An overview of the origins of project Tycho.

• Our World in Data
https://ourworldindata.org/
A project of the Oxford Martin School to make public health data, including progress in UN
Sustainable Development Goals, available and accessible.

• Demographic Party Trick
https://www.youtube.com/watch?v=2nDh8MQuS-Y
Prof Hans Rosling (Karolinska Institute and Gapminder Foundation) and Bill Gates seek to
shed light on the true statistics of childhood vaccinations.
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Investigation 7

Spurious correlations!

• The danger of mixing up causality and correlation
https://www.youtube.com/watch?v=8B271L3NtAw
Prov Ionica Smeets (University of Leiden) discusses causality and correlation.

• Spurious correlations
https://tylervigen.com/spurious-correlations
Tyler Vigen’s site dedicated to spurious correlations.

• Cause & Effect
https://www.youtube.com/watch?v=lbODqslc4Tg
Correlation vs. causality from the Clip from the 2010 documentary “Freakonomics: The
Movie”.

Investigation 8

Data and Society: can data-driven and predictive modelling lead to a better world? What are the ethics
of mass data collection?

• Science behind the news: Predictive Policing
https://www.youtube.com/watch?v=74_jreara3w
The Los Angeles Police Department is using a new tactic in their fight against crime called
“predictive policing.” It’s a computer program originally developed by a team at UCLA,
including mathematician Andrea Bertozzi and anthropologist Jeff Brantingham. “Science
Behind the News” is produced in partnership with NBC Learn. (Provided by the National
Science Foundation & NBC Learn)

• You should get paid for your data
https://www.nytimes.com/video/opinion/100000006678020/data-privacy-jaron-lanier-
2.html
Jaron Lanier (Computer Scientist and Author) discusses a compensation plan and data dignity.
https://www.ted.com/talks/jennifer_zhu_scott_why_you_should_get_paid_for_your_data
Jennifer Zhu Scott (Computer Scientist) also thinks you should get paid for your data.

• How tech companies deceive you into giving up your data and privacy
https://www.ted.com/talks/finn_lutzow_holm_myrstad_how_tech_companies_deceive_yo
u_into_giving_up_your_data_and_privacy
Finn Lützow-HolmMyrstad (Norwegian Consumer Council) discusses consumer protections
and data collection.

• Your company’s data could help end world hunger
https://www.ted.com/talks/mallory_freeman_your_company_s_data_could_help_end_wor
ld_hunger
Mallory Freeman (Data Scientist) discusses how to do the most good with data.
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Investigation 9

Machine learning / big data.

• What is Machine Learning?
https://www.youtube.com/watch?v=f_uwKZIAeM0
OxfordSparks discusses the topic of supervised learning algorithms and how machine learn-
ing is used all around us.

• Big Data (TED-Ed)
https://www.youtube.com/watch?v=j-0cUmUyb-Y
Tim Smith (educator) discusses the historical arc of big data in this TED-Ed animation.

• The human insights missing from big data
https://www.ted.com/talks/tricia_wang_the_human_insights_missing_from_big_data
Tricia Wang (Ethnographer) discusses the human insights missing from big data.

• How we can find ourselves in data
https://www.ted.com/talks/giorgia_lupi_how_we_can_find_ourselves_in_data
Giorgia Lupi (Designer) discusses a humanistic approach to data and data visualization.
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